3,409 research outputs found
Efficient public-key cryptography with bounded leakage and tamper resilience
We revisit the question of constructing public-key encryption and signature schemes with security in the presence of bounded leakage and tampering memory attacks. For signatures we obtain the first construction in the standard model; for public-key encryption we obtain the first construction free of pairing (avoiding non-interactive zero-knowledge proofs). Our constructions are based on generic building blocks, and, as we show, also admit efficient instantiations under fairly standard number-theoretic assumptions.
The model of bounded tamper resistance was recently put forward by Damgård et al. (Asiacrypt 2013) as an attractive path to achieve security against arbitrary memory tampering attacks without making hardware assumptions (such as the existence of a protected self-destruct or key-update mechanism), the only restriction being on the number of allowed tampering attempts (which is a parameter of the scheme). This allows to circumvent known impossibility results for unrestricted tampering (Gennaro et al., TCC 2010), while still being able to capture realistic tampering attack
Non-malleable encryption: simpler, shorter, stronger
In a seminal paper, Dolev et al. [15] introduced the notion of non-malleable encryption (NM-CPA). This notion is very intriguing since it suffices for many applications of chosen-ciphertext secure encryption (IND-CCA), and, yet, can be generically built from semantically secure (IND-CPA) encryption, as was shown in the seminal works by Pass et al. [29] and by Choi et al. [9], the latter of which provided a black-box construction. In this paper we investigate three questions related to NM-CPA security: 1. Can the rate of the construction by Choi et al. of NM-CPA from IND-CPA be improved? 2. Is it possible to achieve multi-bit NM-CPA security more efficiently from a single-bit NM-CPA scheme than from IND-CPA? 3. Is there a notion stronger than NM-CPA that has natural applications and can be achieved from IND-CPA security? We answer all three questions in the positive. First, we improve the rate in the scheme of Choi et al. by a factor O(λ), where λ is the security parameter. Still, encrypting a message of size O(λ) would require ciphertext and keys of size O(λ2) times that of the IND-CPA scheme, even in our improved scheme. Therefore, we show a more efficient domain extension technique for building a λ-bit NM-CPA scheme from a single-bit NM-CPA scheme with keys and ciphertext of size O(λ) times that of the NM-CPA one-bit scheme. To achieve our goal, we define and construct a novel type of continuous non-malleable code (NMC), called secret-state NMC, as we show that standard continuous NMCs are not enough for the natural “encode-then-encrypt-bit-by-bit” approach to work. Finally, we introduce a new security notion for public-key encryption that we dub non-malleability under (chosen-ciphertext) self-destruct attacks (NM-SDA). After showing that NM-SDA is a strict strengthening of NM-CPA and allows for more applications, we nevertheless show that both of our results—(faster) construction from IND-CPA and domain extension from one-bit scheme—also hold for our stronger NM-SDA security. In particular, the notions of IND-CPA, NM-CPA, and NM-SDA security are all equivalent, lying (plausibly, strictly?) below IND-CCA securit
Survey of Canada Goose Feces for Presence of \u3cem\u3eGiardia\u3c/em\u3e
As resident Canada goose (Branta canadensis) populations increase throughout North America, so do the health and environmental risks associated with goose feces. Previous studies suggest that goose feces may be a conduit for transmitting Giardia, a protozoan that is parasitic to humans. We surveyed fecal droppings from free-ranging resident Canada geese for Giardia spp. at 9 sites in the Triangle area (Raleigh, Durham, and Chapel Hill) of North Carolina in 2007 and 2008. Samples (n = 234) were tested using the ProSpect® Giardia EZ Microplate Assay, and there were no positives. Our results indicate that risk of zoonotic giardiasis from Canada goose feces in the Triangle area of North Carolina is low
Extending the applicability of the dose addition model to the assessment of chemical mixtures of partial agonists by using a novel toxic unit extrapolation method
This article has been made available through the Brunel Open Access Publishing Fund.Dose addition, a commonly used concept in toxicology for the prediction of chemical mixture effects, cannot readily be applied to mixtures of partial agonists with differing maximal effects. Due to its mathematical features, effect levels that exceed the maximal effect of the least efficacious compound present in the mixture, cannot be calculated. This poses problems when dealing with mixtures likely to be encountered in realistic assessment situations where chemicals often show differing maximal effects. To overcome this limitation, we developed a pragmatic solution that extrapolates the toxic units of partial agonists to effect levels beyond their maximal efficacy. We extrapolated different additivity expectations that reflect theoretically possible extremes and validated this approach with a mixture of 21 estrogenic chemicals in the E-Screen. This assay measures the proliferation of human epithelial breast cancers. We found that the dose-response curves of the estrogenic agents exhibited widely varying shapes, slopes and maximal effects, which made it necessary to extrapolate mixture responses above 14% proliferation. Our toxic unit extrapolation approach predicted all mixture responses accurately. It extends the applicability of dose addition to combinations of agents with differing saturating effects and removes an important bottleneck that has severely hampered the use of dose addition in the past. © 2014 Scholze et al
Density effect in Cu K-shell ionization by 5.1-GeV electrons
We have made an absolute measurement of the Cu K-shell impact ionization cross section by 5.1-GeV electrons, which demonstrates directly a density effect predicted by Fermi in 1940. By determining the ratio of the K x-ray yield from a thin front and back layer of the target by a novel grazing emission method, we have verified the effect of transition radiation on the x-ray production, suggested by Sorensen and reported by Bak et al
Разработка модели контейнера для сбора компактных люминесцентных ламп
Предложена конструкция контейнера для сбора у населения компактных люминесцентных ламп. Разработан и создан демонстрационный макет контейнера. Проверена его работоспособность.A container design is proposed for collecting compact fluorescent lamps from the city residents. A demonstration mock-up of the container was developed and created. It is checked up its working capacity
Predictable arguments of knowledge
We initiate a formal investigation on the power of predictability for argument of knowledge systems for NP. Specifically, we consider private-coin argument systems where the answer of the prover can be predicted, given the private randomness of the verifier; we call such protocols Predictable Arguments of Knowledge (PAoK).
Our study encompasses a full characterization of PAoK, showing that such arguments can be made extremely laconic, with the prover sending a single bit, and assumed to have only one round (i.e., two messages) of communication without loss of generality.
We additionally explore PAoK satisfying additional properties (including zero-knowledge and the possibility of re-using the same challenge across multiple executions with the prover), present several constructions of PAoK relying on different cryptographic tools, and discuss applications to cryptography
Recommended from our members
Frontal and Parietal Components of a Cerebral Network Mediating Voluntary Attention to Novel Events
Despite the important role that attending to novel events plays in human behavior, there is limited information about the neuroanatomical underpinnings of this vital activity. This study investigated the relative contributions of the frontal and posterior parietal lobes to the differential processing of novel and target stimuli under an experimental condition in which subjects actively directed attention to novel events. Event-related potentials were recorded from well-matched frontal patients, parietal patients, and non-brain-injured subjects who controlled their viewing duration (by button press) of line drawings that included a frequent, repetitive background stimulus, an infrequent target stimulus, and infrequent, novel visual stimuli. Subjects also responded to target stimuli by pressing a foot pedal. Damage to the frontal cortex resulted in a much greater disruption of response to novel stimuli than to designated targets. Frontal patients exhibited a widely distributed, profound reduction of the novelty P3 response and a marked diminution of the viewing duration of novel events. In contrast, damage to posterior parietal lobes was associated with a substantial reduction of both target P3 and novelty P3 amplitude; however, there was less disruption of the processing of novel than of target stimuli. We conclude that two nodes of the neuroanatomical network for responding to and processing novelty are the prefrontal and posterior parietal regions, which participate in the voluntary allocation of attention to novel events. Injury to this network is indexed by reduced novelty P3 amplitude, which is tightly associated with diminished attention to novel stimuli. The prefrontal cortex may serve as the central node in determining the allocation of attentional resources to novel events, whereas the posterior parietal lobe may provide the neural substrate for the dynamic process of updating one's internal model of the environment to take into account a novel event
- …