
Non-Malleable Encryption: Simpler, Shorter, Stronger

Sandro Coretti
ETH Zurich

corettis@inf.ethz.ch

Yevgeniy Dodis
New York University
dodis@cs.nyu.edu

Björn Tackmann∗

UC San Diego
btackmann@eng.ucsd.edu

Daniele Venturi
Sapienza University of Rome
venturi@di.uniroma1.it

Abstract

In a seminal paper, Dolev et al. [15] introduced the notion of non-malleable encryption (NM-CPA).
This notion is very intriguing since it suffices for many applications of chosen-ciphertext secure encryp-
tion (IND-CCA), and, yet, can be generically built from semantically secure (IND-CPA) encryption, as
was shown in the seminal works by Pass et al. [29] and by Choi et al. [9], the latter of which provided
a black-box construction. In this paper we investigate three questions related to NM-CPA security:

1. Can the rate of the construction by Choi et al. of NM-CPA from IND-CPA be improved?
2. Is it possible to achieve multi-bit NM-CPA security more efficiently from a single-bit NM-CPA

scheme than from IND-CPA?
3. Is there a notion stronger than NM-CPA that has natural applications and can be achieved from

IND-CPA security?

We answer all three questions in the positive. First, we improve the rate in the construction of
Choi et al. by a factor O(λ), where λ is the security parameter. Still, encrypting a message of size
O(λ) would require ciphertext and keys of size O(λ2) times that of the IND-CPA scheme, even in our
improved scheme. Therefore, we show a more efficient domain extension technique for building a λ-bit
NM-CPA scheme from a single-bit NM-CPA scheme with keys and ciphertext of size O(λ) times that of
the NM-CPA one-bit scheme. To achieve our goal, we define and construct a novel type of continuous
non-malleable code (NMC), called secret-state NMC, as we show that standard continuous NMCs are
not enough for the natural “encode-then-encrypt-bit-by-bit” approach to work.

Finally, we introduce a new security notion for public-key encryption (PKE) that we dub non-
malleability under (chosen-ciphertext) self-destruct attacks (NM-SDA). After showing that NM-SDA is
a strict strengthening of NM-CPA and allows for more applications, we nevertheless show that both of
our results—(faster) construction from IND-CPA and domain extension from one-bit scheme—also hold
for our stronger NM-SDA security. In particular, the notions of IND-CPA, NM-CPA, and NM-SDA
security are all equivalent, lying (plausibly, strictly?) below IND-CCA security.

∗Work done while author was as ETH Zurich.
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1 Introduction

Several different security notions for public-key encryption (PKE) have been proposed. The most basic
one is that of indistinguishability under chosen-plaintext attacks (IND-CPA) [21], which requires that an
adversary with no decryption capabilities be unable to distinguish between the encryption of two messages.
Although extremely important and useful for a number of applications, in many cases IND-CPA security
is not sufficient. For example, consider the simple setting of an electronic auction, where the auctioneer
U publishes a public key pk, and invites several participants P1, . . . , Pq to encrypt their bids bi under
pk. As was observed in the seminal paper of Dolev et al. [15], although IND-CPA security of encryption
ensures that P1 cannot decrypt a bid of P2 under the ciphertext e2, it leaves open the possibility that
P1 can construct a special ciphertext e1 which decrypts to a related bid b1 (e.g., b1 = b2 + 1). Hence, to
overcome such “malleability” problems, stronger forms of security are required.

The strongest such level of PKE security is indistinguishability under chosen-ciphertext attacks (IND-
CCA), where the adversary is given unrestricted, adaptive access to a decryption oracle (modulo not being
able to ask on the “challenge ciphertext”). This notion is sufficient for most natural applications of PKE,
and several generic [15, 28, 31, 5, 25] and concrete [13, 14, 24, 22] constructions of IND-CCA secure en-
cryption schemes are known by now. Unfortunately, all these constructions either rely on specific number-
theoretic assumptions, or use much more advanced machinery (such as non-interactive zero-knowledge
proofs or identity-based encryption) than IND-CPA secure encryption. Indeed, despite numerous efforts
(e.g., a partial negative result [20]), the relationship between IND-CPA and IND-CCA security remains
unresolved until now. This motivates the study of various “middle-ground” security notions between IND-
CPA and IND-CCA, which are sufficient for applications, and, yet, might be constructed from simpler
basic primitives (e.g., any IND-CPA encryption).

One such influential notion is non-malleability under chosen-plaintext attacks (NM-CPA), originally
introduced by Dolev et al. [15] with the goal of precisely addressing the auction example above, by
demanding that an adversary not be able to maul ciphertexts to other ciphertexts encrypting related
plaintexts. As was later shown by Bellare and Sahai [4] and by Pass et al. [30], NM-CPA is equivalent to
security against adversaries with access to a non-adaptive decryption oracle, meaning that the adversary
can only ask one “parallel” decryption query. Although NM-CPA appears much closer to IND-CCA than
IND-CPA security, a seminal result by Pass et al. [29] showed that one can generically build NM-CPA
encryption from any IND-CPA-secure scheme, and Choi et al. [9] later proved that this transformation
can also be achieved via a black-box construction. Thus, NM-CPA schemes can be potentially based on
weaker assumptions than IND-CCA schemes, and yet suffice for important applications.

Our work. In this paper we investigate three questions related to NM-CPA security:

1. Can the efficiency of the construction by Choi et al. of NM-CPA from IND-CPA be improved?
2. Is it possible to achieve multi-bit NM-CPA security more efficiently from a single-bit NM-CPA

scheme than from IND-CPA?
3. Is there a notion stronger than NM-CPA that has natural applications and can be achieved from

IND-CPA security?

We answer all three questions positively. We start with Question 3, as it will also allow us to achieve
stronger answers for Questions 1 and 2. In a recent paper, Coretti et al. [10] introduced a new middle-
ground security notion for encryption—termed indistinguishability under (chosen-ciphertext) self-destruct
attacks (IND-SDA) in this paper1—where the adversary gets access to an adaptive decryption oracle,
which, however, stops decrypting after the first invalid ciphertext is submitted. Applying this notion to
the auction example above, it means that the auctioneer can reuse the secret key for subsequent auctions,
as long as all the encrypted bids are valid. Unfortunately, if an invalid ciphertext is submitted, even the
results of the current auction should be discarded, as IND-SDA security is not powerful enough to argue
that the decryptions of the remaining ciphertexts are unrelated w.r.t. prior plaintexts.

1The original name used in [10] is self-destruct chosen-ciphertext attacks security.
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Motivated by the above, we introduce a new security notion that we dub non-malleability under
(chosen-ciphertext) self-destruct attacks (NM-SDA). This notion (see Definition 3) naturally combines
NM-CPA and IND-SDA, by allowing the adversary to ask many adaptive “parallel” decryption queries
(i.e., a query consists of many ciphertexts) up to the point when the first invalid ciphertext is submitted.
In such a case, the whole parallel decryption query containing an invalid ciphertext is still answered in
full, but no future decryption queries are allowed. By being stronger (as we show below) than both
NM-CPA and IND-SDA, NM-SDA security appears to be a strongest natural PKE security notion that is
still weaker (as we give evidence below) than IND-CCA—together with q-bounded CCA-secure PKE [12],
to which it seems incomparable. In particular, it seems to apply better to the auction example above:
First, unlike with basic NM-CPA, the auctioneer can reuse the same public key pk, provided no invalid
ciphertexts were submitted. Second, unlike IND-SDA, the current auction can be safely completed, even if
some ciphertexts are invalid. Compared to IND-CCA, however, the auctioneer will still have to change its
public key for subsequent auctions if some of the ciphertexts are invalid. Still, one can envision situations
where parties are penalized for submitting such malformed ciphertexts, in which case NM-SDA security
might be practically sufficient, leading to an implementation under (potentially) lesser computational
assumptions as compared to using a full-blown IND-CCA PKE.

Having introduced and motivated NM-SDA security, we provide a comprehensive study of this notion,
and its relationship to other PKE security notions. First, we observe that the prior notions of NM-CPA
and IND-SDA are incomparable, meaning that there are (albeit contrived) schemes that satisfy the former
but not the latter notion and vice versa (cf. Theorem 22 in Appendix A). This also implies that our notion
of NM-SDA security is strictly stronger than either of the two other notions.

Next, we turn to Question 2 above and answer it affirmatively even for our stronger notion of NM-SDA
security; indeed, our security proof is easily seen to carry over to the simpler case of NM-CPA security.
Finally, we also simultaneously answer Questions 1 and 3, by presenting a generalization of the Choi et
al. [9] construction from IND-CPA encryption which: (a) allows us to improve the plaintext-length to
ciphertext-length rate by a factor linear in the security parameter as compared to the construction of [9]
(which is a special case of our abstraction, but with sub-optimal parameters); (b) generically achieves
NM-SDA security (with or without the efficiency improvement). We detail these results below.

Domain extension. For several security notions in public-key cryptography, is is known that single-bit
public-key encryption implies multi-bit public-key encryption. For IND-CPA, this question is simple [21],
since the parallel repetition of a single-bit scheme (i.e., encrypting every bit of a message separately)
yields an IND-CPA secure multi-bit scheme. For the other notions considered in this paper, i.e., for NM-
CPA, IND-SDA, and NM-SDA, as well as for IND-CCA, the parallel repetition (even using independent
public keys) is not a scheme that achieves the same security level as the underlying single-bit scheme.
However, Coretti et al. [10] provide a single-to-multi-bit transformation for IND-SDA security based on
non-malleable codes [17] (see below), and Myers and Shelat [27], as well as Hohenberger et al. [23], provide
(much) more complicated such transformations for IND-CCA security. To complement these works, we
answer the question of domain extension for NM-SDA and NM-CPA in the affirmative. In particular we
show the following result:

Theorem 1 (Informal). Let λ be the security parameter. Then there is a black-box construction of a
λ-bit NM-SDA (resp. NM-CPA) PKE scheme from a single-bit NM-SDA (resp. NM-CPA) PKE scheme,
making O(λ) calls to the underlying single-bit scheme.2

The proof of Theorem 1 can be found in Section 4. Our approach follows that for IND-SDA [10] and com-
bines single-bit PKE with so-called non-malleable codes (NMCs), introduced by Dziembowski et al. [17].
Intuitively, NMCs protect encoded messages against a tampering adversary, which tampers with the code-
word by means of applying functions f from a particular function class F to it, in the sense that the
decoding results in either the original message or a completely unrelated value.

2For longer than λ-bit messages, one can also use standard hybrid encryption.
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IND-CCA

NM-SDA

NM-CPA IND-SDA

IND-CPA

Figure 1: Diagram of the main relationships between the security notions considered in this paper. X → Y
means that X implies Y ; X 9 Y indicates a separation between X and Y . Notions with the same color are
equivalent under black-box transformations; notions with different colors are not known to be equivalent.

Our construction has the following simple structure (see also Figure 4): The plaintext m is first
encoded using an appropriate non-malleable code into an encoding c, which is in turn encrypted bit-
by-bit (under independent public keys) with the single-bit NM-SDA scheme.3 The fact that NM-SDA
security guarantees that an attacker can either leave a ciphertext intact or replace it, which results in an
unrelated message, translates to the following capability of an adversary w.r.t. decryption queries: It can
either leave a particular bit of the encoding unchanged, or fix it to 0 or to 1. Therefore, the tamper class
against which the non-malleable code must be resilient is the class Fset of functions that tamper with
each bit of an encoding individually and can either leave it unchanged or set it to a fixed value.

The main new challenge for our construction is to deal with the parallel decryption queries: in order
for the combined scheme to be NM-SDA secure, the NMC needs to be resilient against parallel tamper
queries as well. Unfortunately, we show that no standard non-malleable code (as originally defined by
Dziembowski et al. [17] and Faust et al. [18]) can achieve this notion (see Section B). Fortunately, we
observe that the NMC concept can be extended to allow the decoder to make use of (an initially generated)
secret state, which simply becomes part of the secret key in the combined scheme. This modification of
NMCs—called secret-state NMCs—allows us to achieve resilience against parallel tampering and may be
of independent interest. This reduces our question to building a secret-state non-malleable code resilient
against continuous parallel tampering attacks from Fset. We construct such a code in Section 4.3, by
combining the notion of linear error-correcting secret sharing (see [17]) with the idea of a secret “trigger
set” [9]. This construction forms one of the main technical contributions of our work.

NM-SDA from IND-CPA. Next, we show:

Theorem 2 (Informal). There exists a black-box construction of an NM-SDA-secure PKE scheme from
an IND-CPA-secure PKE.

Hence, the notions of IND-CPA, NM-CPA, IND-SDA, and NM-SDA security are all equivalent, lying
(plausibly, strictly?) below IND-CCA security. See Figure 1.

The proof of Theorem 2 appears in Section 5. In fact, we show that a generalization of the construction
by Choi et al. already achieves NM-SDA security (rather than only NM-CPA security). Our proof much
follows the pattern of the original one, except for one key step in the proof, where a brand new proof
technique is required. Intuitively, we need to argue that no sensitive information about the secret “trigger
set” is leaked to the adversary, unless one of the ciphertexts is invalid. This rather general technique
(for analyzing security of so called “parallel stateless self-destruct games”) may be interesting in its own
right (e.g., it is also used in the security proof of our non-malleable code in Section 4), and is detailed in
Section 6.

3Technically, this scheme only achieves a slight relaxation of NM-SDA security, called replayable NM-SDA security, but
the latter can be easily transformed into the former.
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Along the way, we also manage to slightly abstract the transformation of [9], and to re-phrase it in
terms of certain linear error-correcting secret-sharing schemes (LECSSs) satisfying a special property (as
opposed to using Reed-Solomon codes directly as an example of such a scheme). Aside from a more
modular presentation (which gives a more intuitive explanation for the elegant scheme of Choi et al. [9]),
this also allows us to instantiate the required LECSS more efficiently and thereby improve the rate of the
transformation of [9] by a factor linear in the security parameter (while also arguing NM-SDA, instead of
NM-CPA, security), giving us the positive answer to Question 1.

2 Preliminaries

This section introduces notational conventions and basic concepts that we use throughout the work.

Bits and symbols. Let ` ∈ N. For any multiple m = t` of `, an m-bit string x = (x[1], . . . , x[m])
= (x1, . . . , xt) can be seen as composed of its bits x[j] or its symbols xi ∈ {0, 1}`. For two m-bit strings
x and y, denote by dH(x, y) their hamming distance as the number of symbols in which they differ.

Oracle algorithms. Oracle algorithms are algorithms that can make special oracle calls. An algorithm
A with an oracle O is denoted by A(O). Note that oracle algorithms may make calls to other oracle
algorithms (e.g., A(B(O))).

Distinguishers and reductions. A distinguisher is an (possibly randomized) oracle algorithm D(·)
that outputs a single bit. The distinguishing advantage on two (possibly stateful) oracles S and T is
defined by

∆D(S, T ) := |P[D(S) = 1]− P[D(T ) = 1]|,

where the probabilities are taken over the randomness of D as well as S and T , respectively.
Reductions between distinguishing problems are modeled as oracle algorithms as well. Specifically,

when reducing distinguishing two oracles U and V to distinguishing S and T , one exhibits an oracle
algorithm R(·) such that R(U) behaves as S and R(V ) as T ; then, ∆D(S, T ) = ∆D(R(U), R(V )) =
∆D(R(·))(U, V ).

Error-correcting sharing schemes. The following notion of a linear error-correcting sharing
scheme, introduced by Dziembowski et al. [17], is used in several places in this paper.

Definition 1 (Linear error-correcting sharing scheme). Let n ∈ N be a security parameter and F a field
of size L = 2` for some ` ∈ N. A (k, n, δ, τ) linear error-correcting sharing scheme (LECSS) over F is a
pair of algorithms (E,D), where E : Fk → Fn is randomized and D : Fn × N→ Fk ∪ {⊥} is deterministic,
with the following properties:

• Linearity: For any vectors w output by E and any c ∈ Fn,

D(w + c) =

{
⊥ if D(c) = ⊥, and

D(w) + D(c) otherwise.

• Minimum distance: For any two codewords w,w′ output by E, dH(w,w′) ≥ δn.
• Error correction: It is possible to efficiently correct up to δn/2 errors, i.e., for any x ∈ Fk and any
w output by E(x), if dH(c, w) ≤ t for some c ∈ Fn and t < δn/2, then D(c, t) = x.

• Secrecy: The symbols of a codeword are individually uniform over F and and τn-wise independent
(over the randomness of E).

This paper considers various instantiations of LECSSs, which are described in Sections 4.5 and 5.3, where
they are used.

One-time signatures. A digital signature scheme (DSS) is a triple of algorithms Σ = (KG , S, V ), where
the key-generation algorithm KG outputs a key pair (sk, vk), the (probabilistic) signing algorithm S takes
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a message m and a signing key sk and outputs a signature s ← Ssk(m), and the verification algorithm
takes a verification key vk, a message m, and a signature s and outputs a single bit Vvk(m, s). A (strong)
one-time signature (OTS) scheme is a digital signature scheme that is secure as long as an adversary
only observes a single signature. More precisely, OTS security is defined using the following game GΣ,ots

played by an adversary A: Initially, the game generates a key pair (sk, vk) and hands the verification key
vk to A. Then, A can specify a single message m for which he obtains a signature s← Svk(m). Then, the
adversary outputs a pair (m′, s′). The adversary wins the game if (m′, s′) 6= (m, s) and Vvk(m

′, s′) = 1.
The advantage of A is the probability (over all involved randomness) that A wins the game, and is denoted
by ΓA(GΣ,ots).

Definition 2. A DSS scheme Σ is a (t, ε)-strong one-time signature scheme if for all adversaries A with
running time at most t, ΓA(GΣ,ots) ≤ ε.

3 Non-Malleability under Self-Destruct Attacks

A public-key encryption (PKE) scheme with message spaceM⊆ {0, 1}∗ and ciphertext space C is defined
as three algorithms Π = (KG , E,D), where the key-generation algorithm KG outputs a key pair (pk, sk),
the (probabilistic) encryption algorithm E takes a message m ∈ M and a public key pk and outputs a
ciphertext e ← Epk(m), and the decryption algorithm takes a ciphertext e ∈ C and a secret key sk and
outputs a plaintext m ← Dsk(e). The output of the decryption algorithm can be the special symbol ⊥,
indicating an invalid ciphertext. A PKE scheme is correct if m = Dsk(Epk(m)) (with probability 1 over
the randomness in the encryption algorithm) for all messages m and all key pairs (pk, sk) generated by
KG .

Security notions for PKE schemes in this paper are formalized using the distinguishing game GΠ,q,p
b ,

depicted in Figure 2: The distinguisher (adversary) is initially given a public key and then specifies two
messages m0 and m1. One of these, namely mb, is encrypted and the adversary is given the resulting chal-
lenge ciphertext. During the entire game, the distinguisher has access to a decryption oracle that allows
him to make at most q decryption queries, each consisting of at most p ciphertexts. Once the distinguisher
specifies an invalid ciphertext, the decryption oracle self-destructs, i.e., no additional decryption queries
are answered.

The general case is obtained when both q and p are arbitrary (denoted by q = p = ∗), which leads
to our main definition of non-malleability under (chosen-ciphertext) self-destruct attacks (NM-SDA). For

readability, set GΠ,nm-sda
b := GΠ,∗,∗

b for b ∈ {0, 1}. Formally, NM-SDA is defined as follows:

Definition 3 (Non-malleability under self-destruct attacks). A PKE scheme Π is (t, q, p, ε)-NM-SDA-
secure if for all distinguishers D with running time at most t and making at most q decryption queries of
size at most p each,

∆D(GΠ,nm-sda
0 , GΠ,nm-sda

1 ) ≤ ε.

All other relevant security notions in this paper can be derived as special cases of the above definition,
by setting the parameters q and p to different values.

Chosen-plaintext security (IND-CPA). In this variant, the distinguisher is not given access to a

decryption oracle, i.e., q = p = 0. For readability, set GΠ,ind-cpa
b := GΠ,0,0

b for b ∈ {0, 1} in the remainder
of this paper. We say that Π is (t, ε)-IND-CPA-secure if it is, in fact, (t, 0, 0, ε)-NM-SDA-secure.

Non-malleability (NM-CPA). A scheme is non-malleable under chosen-plaintext attacks [29] (NM-
CPA), if the adversary can make a single decryption query consisting of arbitrarily many ciphertexts, i.e.,
q = 1 and p arbitrary (denoted by p = ∗). Similarly to above, set GΠ,nm-cpa

b := GΠ,1,∗
b for b ∈ {0, 1}. We

say that Π is (t, p, ε)-NM-CPA-secure if it is, in fact, (t, 1, p, ε)-NM-SDA-secure.4

4Note that the way NM-CPA is defined here is slightly stronger than the normal notion. This is due to the adversary’s
ability to ask a parallel decryption query at any time—as opposed to only after receiving the challenge ciphertext in earlier
definitions (cf., e.g., [29]).
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Distinguishing Game GΠ,q,p
b

init
ctr← 0
(pk, sk)← KG
output pk

on (chall,m0,m1) with |m0| = |m1|
e← Epk(mb)
output e

on (dec, e(1), . . . , e(p))
ctr← ctr + 1
for j ← 1 to p

m(j) ← Dsk(e
(j))

if e(j) = e

m(j) ← test

output (m(1), . . . ,m(p))

if ∃j : m(j) = ⊥ or ctr ≥ q
self-destruct

Figure 2: Distinguishing game GΠ,q,p
b , where b ∈ {0, 1}, used to define security of a PKE scheme Π =

(KG , E,D). The numbers q, p ∈ N specify the maximum number of decryption queries and their size,
respectively. The command self-destruct results in all future decryption queries being answered by ⊥.

Indistinguishability under self-destruct attacks (IND-SDA). This variant, introduced in [10],
allows arbitrarily many queries to the decryption oracle, but each of them may consist of a single ciphertext
only, i.e., q arbitrary (denoted by q = ∗) and p = 1. Once more, set GΠ,ind-sda

b := GΠ,∗,1
b . We say that Π

is (t, q, ε)-IND-SDA-secure if it is, in fact, (t, q, 1, ε)-NM-SDA-secure.

Chosen-ciphertext security (IND-CCA). The standard notion of IND-CCA security can be ob-
tained as a strengthening of NM-SDA where q = ∗, p = 1, and the decryption oracle never self-destructs.
We do not define this notion formally, as it is not the main focus of this paper.

Asymptotic formulation. To allow for concise statements, sometimes we prefer to use an asymptotic
formulation instead of stating concrete parameters. More precisely, we will say that a PKE scheme Π is X-
secure (for X ∈ {IND-CPA, NM-CPA, IND-SDA, NM-SDA}) if for all efficient adversaries the advantage
ε in the corresponding distinguishing game is negligible in the security parameter.

Non-malleable CPA vs. indistinguishable SDA. We provide a separation between the notions of
NM-CPA and IND-SDA security; a corresponding theorem and proof can be found in Appendix A. Given
such a separation, our notion of NM-SDA security (see Definition 3) is strictly stronger than either of the
two other notions.

4 Domain Extension

This section contains one of our main technical results. We show how single-bit NM-SDA PKE can be
combined with so-called secret-state non-malleable codes resilient against continuous parallel tampering,
which we believe is an interesting notion in its own right, to achieve multi-bit NM-SDA-secure PKE. We
construct such a code and prove its security, and, additionally, we show that no code without secret state
can achieve security against parallel tampering unconditionally (see Theorem 14 in Appendix B).5

4.1 A New Flavor of Non-Malleable Codes

Non-malleable codes were introduced by Dziembowski et al. [17]. Intuitively, they protect encoded mes-
sages in such a way that any tampering with the codeword causes the decoding to either output the
original message or a completely unrelated value. The original notion can be extended to include the
aforementioned secret state in the decoder as follows:

Definition 4 (Code with secret state). A (k, n)-code with secret state (CSS) is a triple of algorithms
(Gen,Enc,Dec), where the (randomized) state-generation algorithm Gen outputs a secret state s from
some set S, the (randomized) encoding algorithm Enc takes a k-bit plaintext x and outputs an n-bit
encoding c← Enc(x), and the (deterministic) decoding algorithm Dec takes an encoding as well as some

5The question whether the notion is achievable by a computationally-secure code remains open for future work.
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Game RF

init
s← Gen

on (encode, x)
c←$ Enc(x)

on (tamper, (f (1), . . . , f (p)))
for j ← 1 to p

c′ ← f (j)(c)

x(j) ← Dec(c′, s)

output (x(1), . . . , x(p))

if ∃j : x(j) = ⊥
self-destruct

Game SF ,sim

on (encode, x)
store x

on (tamper, (f (1), . . . , f (p)))

(x(1), . . . , x(p))←$ sim((f (1), . . . , f (p)))

for all x(j) = same

x(j) ← x

output (x(1), . . . , x(p))

if ∃j : x(j) = ⊥
self-destruct

Figure 3: Distinguishing game (RF , SF,sim) used to define non-malleability of a secret-state coding scheme
(Gen,Enc,Dec). The command self-destruct has the effect that all future queries are answered by ⊥.

secret state s ∈ S and outputs a plaintext x ← Dec(c, s) or the special symbol ⊥, indicating an invalid
encoding.

Tampering attacks are captured by functions f , from a certain function class F , that are applied to
an encoding. The original definition by [17] allows an attacker to apply only a single tamper function.
In order to capture continuous parallel attacks, the definition below permits the attacker to repeatedly
specify parallel tamper queries, each consisting of several tamper functions. The process ends as soon as
one of the tamper queries leads to an invalid codeword.

The non-malleability requirement is captured by considering a real and an ideal experiment. In both
experiments, an attacker is allowed to encode a message of his choice. In the real experiment, he may
tamper with an actual encoding of that message, whereas in the ideal experiment, the tamper queries are
answered by a (stateful) simulator. The simulator is allowed to output the special symbol same, which
the experiment replaces by the originally encoded message. In either experiment, if a component of the
answer vector to a parallel tamper query is the symbol ⊥, a self-destruct occurs, i.e., all future tamper
queries are answered by ⊥. The experiments are depicted in Figure 3.

Definition 5 (Non-malleable code with secret state). Let q, p ∈ N and ε > 0. A CSS (Gen,Enc,Dec) is
(F , q, p, ε)-non-malleable if the following properties are satisfied:

• Correctness: For each x ∈ {0, 1}k and all s ∈ S output by Gen, Dec(Enc(x), s) = x with probability
1 over the randomness of Enc.

• Non-Malleability: There exists a (possibly stateful) simulator sim such that for any distinguisher D
asking at most q parallel queries, each of size at most p, ∆D(RF , SF ,sim) ≤ ε.

We remark that for codes without secret state (as the ones considered in [17]), one obtains the standard
notion of non-malleability [17] by setting q = p = 1, and continuous non-malleability [18] by letting p = 1
and q arbitrary (i.e., q = ∗).

4.2 Combining Single-bit PKE and Non-Malleable Codes

Our construction of a multi-bit NM-SDA-secure PKE scheme Π′ from a single-bit NM-SDA-secure scheme
Π and a secret-state non-malleable (k, n)-code follows the approach of [10]: It encrypts a k-bit message
m by first computing an encoding c = (c[1], . . . , c[n]) of m and then encrypting each bit c[j] under an
independent public key of Π; it decrypts by first decrypting the individual components and then decoding
the resulting codeword using the secret state of the non-malleable code; the secret state is part of the
secret key. The scheme is depicted in detail in Figure 4.

Intuitively, NM-SDA security (or CCA security in general) guarantees that an attacker can either leave
a message intact or replace it by an independently created one. For our construction, which separately
encrypts every bit of an encoding of the plaintext, this translates to the following capability of an adversary
w.r.t. decryption queries: It can either leave a particular bit of the encoding unchanged or fix it to 0 or
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PKE Scheme Π′ = (KG ′, E′, D′)

Key Generation KG ′

for i← 1 to n
(pki, ski)←$ KG

pk← (pk1, . . . , pkn)
sk← (sk1, . . . , skn)
s← Gen
return (pk, (sk, s))

Encryption E′pk(m)

c = (c[1], . . . , c[n])← Enc(m)
for i← 1 to n

ei←$ Epki(c[i])
return e = (e1, . . . , en)

Decryption D′(sk,s)(e)

(e1, . . . , en)← e
for i← 1 to n

c[i]←$Dski(ei)
if c[i] = ⊥

return ⊥
m← Dec(c[1] · · · c[n], s)
return m

Figure 4: The k-bit PKE scheme Π′ = (KG ′, E′, D′) built from a 1-bit PKE scheme Π = (KG , E,D) and
a (k, n)-coding scheme with secret state (Gen,Enc,Dec).

to 1. Therefore, the tamper class against which the non-malleable code must be resilient is the class
Fset ⊆ {f | f : {0, 1}n → {0, 1}n} of functions that tamper with each bit of an encoding individually and
can either leave it unchanged or set it to a fixed value. More formally, f ∈ Fset can be characterized by
(f [1], . . . , f [n]), where f [j] : {0, 1} → {0, 1} is the action of f on the jth bit and f [j] ∈ {zero, one, keep}
with the meaning that it either sets the jth bit to 0 (zero) or to 1 (one) or leaves it unchanged (keep).

Before stating the theorem about the security of our construction Π′, it needs to be pointed out that
it achieves only the so-called replayable variant of NM-SDA security. The notion of replayable CCA
(RCCA) security (in general) was introduced by Canetti et al. [6] to deal with the fact that for many
applications (full) CCA security is unnecessarily strict. Among other things, they provide a MAC-based
generic transformation of RCCA-secure schemes into CCA-secure ones, which we can also apply in our
setting (as we show) to obtain a fully NM-SDA-secure scheme Π′′.

Theorem 3. Let q, p ∈ N and Π be a (t + t1bit, q, p, ε1bit)-NM-SDA-secure 1-bit PKE scheme, (T, V ) a
(t + tmac, 1, qp, εmac)-MAC, and (Gen,Enc,Dec) a (Fset, q, p, εnmc)-non-malleable (k, n)-code with secret
state. Then, Π′′ is (t, q, p, ε)-NM-SDA-secure PKE scheme with

ε = 2(3(nε1bit + εnmc) + qp · 2−` + εmac),

where t1bit and tmac are the overheads incurred by the corresponding reductions and ` is the length of a
verification key for the MAC.

The full proof of Theorem 3 can be found in Appendix C; here we only provide a sketch. We stress
that an analogous statement as the one of the above theorem works for domain extension of NM-CPA,
i.e., for constructing a multi-bit NM-CPA scheme out of a single-bit NM-CPA scheme. The proof is very
similar to the one of Theorem 3 and therefore omitted.

Proof (sketch). The proof considers a series of n hybrid experiments. In very rough terms, the ith hybrid
generates the challenge ciphertext by computing an encoding c = (c[1], . . . , c[n]) of the challenge plaintext
and by replacing the first i bits c[i] of c by random values c̃[i] before encrypting the encoding bit-wise,
leading to the challenge (e∗1, . . . , e

∗
n). Moreover, when answering decryption queries (e′1, . . . , e

′
n), if e′j = e∗j

for j ≤ i, the ith hybrid sets the outcome of e′j ’s decryption to be the corresponding bit c[j] of the original
encoding c, whereas if e′j 6= e∗j , it decrypts normally (then it decodes the resulting n-bit string normally).
This follows the above intuition that a CCA-secure PKE scheme guarantees that if a decryption query
is different from the challenge ciphertext, then the plaintext contained in it must have been created
independently of the challenge plaintext. The indistinguishability of the hybrids follows from the security
of the underlying single-bit scheme Π.

In the nth hybrid, the challenge consists of n encryptions of random values. Thus, the only information
about the encoding of the challenge plaintext that an attacker gets is that leaked through decryption
queries. But in the nth hybrid there is a 1-to-1 correspondence between decryption queries and the
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tamper function f = (f [1], . . . , f [n]) applied to the encoding of the challenge plaintext: The case e′j = e∗j
corresponds to f [j] = keep, and the case e′j 6= e∗j corresponds to f [j] = zero or f [j] = one, depending
on whether e′j decrypts to zero or to one. This allows a reduction to the security of the non-malleable
code.

4.3 Non-Malleable Code Construction

It remains to construct a non-malleable code (with secret state) resilient against parallel tampering. The
intuition behind our construction is the following: If a code has the property (as has been the case
with previous schemes secure against (non-parallel) bit-wise tampering) that changing a single bit of a
valid encoding results in an invalid codeword, then the tamper function that fixes a particular bit of the
encoding and leaves the remaining positions unchanged can be used to determine the value of that bit; this
attack is parallelizable, and thus a code of this type cannot provide security against parallel tampering.
A similar attack is also possible if the code corrects a fixed (known) number of errors. To circumvent this
issue, our construction uses a—for the lack of a better word—“dynamic” error-correction bound: The
secret state (which is initially chosen at random) is used to determine the positions of the encoding in
which (a certain amount of) errors is tolerated.

Construction. Let F = GF(2) and α > 0. Let (E,D) be a (k, n, δ, τ)-LECSS (cf. Definition 1 in
Section 2) with minimum distance δ and secrecy τ over F such that:6

• Minimum distance: δ > 1/4 + 2α and δ/2 > 2α.
• Constant rate: k/n = Ω(1).
• Constant secrecy: τ = Ω(1).

In the following, we assume that α ≥ τ , an assumption that can always be made by ignoring some of the
secrecy. Consider the following (k, n)-code with secret state (Gen,Enc,Dec):

• Gen: Choose a subset T of [n] of size τn uniformly at random and output it.
• Enc(x) for x ∈ {0, 1}k: Compute c = E(x) and output it.
• Dec(c, T ) for c ∈ {0, 1}n: Find a codeword w = (w[1], . . . , w[n]) with dH(w, c) ≤ αn. If no such w

exists, output ⊥. Moreover, if w[j] 6= c[j] for some j ∈ T , output ⊥ as well. Otherwise, decode w
to its corresponding plaintext x and output it.

We prove the following theorem:

Theorem 4. For all q, p ∈ N, (k, n)-code (Gen,Enc,Dec) based on a (k, n, δ, τ)-LECSS satisfying the
three conditions above is (Fset, q, p, εnmc)-non-malleable with

εnmc = p(O(1) · e−τn/16 + e−τ
2n/4) + pe−τ

2n.

Instantiating the construction. Section 4.5 details how a LECSS satisfying the above properties
can be constructed by combining high-distance binary codes with a recent result by Cramer et al. [11] in
order to “add” secrecy. The resulting LECSS has secrecy τ = Ω(1) and rate ρ = Ω(1) (cf. Corollary 13 in
Section 4.5). The secrecy property depends on the random choice of a universal hash function. Thus, the
instantiated code can be seen as a construction in the CRS model. When combined with the single-bit
PKE as described above, the description of the hash function can be made part of the public key.

By combining Theorem 3, Theorem 4, and Corollary 13, we obtain a 1-to-k-bit black-box domain
extension for NM-SDA (and NM-CPA) making O(k) calls to the underlying 1-bit scheme, therefore
establishing Theorem 1.7

6The reasons for these restrictions become apparent in the proof; of course, α must be chosen small enough in order for
these constraints to be satisfiable.

7Note that for the construction to be secure, it is necessary that n = Ω(λ) and, therefore, due to the constant rate of the
LECSS, the plaintext length is k = Ω(λ) as well.
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4.4 Proof of the Non-Malleable Code Construction

For the proof of Theorem 4, fix q, p ∈ N and a distinguisher D making at most q tamper queries of size p
each. Set F := Fset for the rest of the proof. In the following, we assume that α ≥ τ , an assumption that
can always be made by ignoring some of the secrecy. The goal is to show

∆D(RF , SF ,sim) ≤ εnmc = p(O(1) · e−τn/16 + e−τ
2n/4) + pe−τ

2n

for a simulator sim to be determined.
On a high level, the proof proceeds as follows: First, it shows that queries that interfere with too

many bits of an encoding and at the same time do not fix enough bits (called middle queries below) are
rejected with high probability. For the remaining query types (called low and high queries), one can show
that their effect on the decoding process can always be determined from the query itself and the bits of
the encoding at the positions indexed by the secret trigger set T . Since the size of T is τn, these symbols
are uniformly random and independent of the encoded message, which immediately implies a simulation
strategy for sim.

4.4.1 Tamper-Query Types

Recall that f ∈ Fset can be characterized by (f [1], . . . , f [n]), where f [j] : {0, 1} → {0, 1} is the action of f
on the jth bit, for f [j] ∈ {zero, one, keep}, with the meaning that it either sets the jth bit to 0 (zero) or to 1
(one) or leaves it unchanged (keep). Define A(f) to be the set of all indices j such that f [j] ∈ {zero, one},
and let q(f) := |A(f)|. Moreover, let val(zero) := 0 and val(one) := 1.

A tamper query f is a low query if q(f) ≤ τn, a middle query if τn < q(f) < (1 − τ)n, and a high
query if q(f) ≥ (1− τ)n.

4.4.2 Analyzing Query Types

The following lemma states that an isolated middle query is rejected with high probability.

Lemma 5. Let f ∈ Fset be a middle query. Then, for any x ∈ {0, 1}k,

P[Dec(f(Enc(x))) 6= ⊥] ≤ O(1) · e−τn/16 + e−τ
2n/4

where the probability is over the randomness of Enc and the choice of the secret trigger set T .

Proof. Fix x ∈ {0, 1}k and a middle query f = (f [1], . . . , f [n]). Suppose first that q(f) ≥ n/2. Define

W := {w ∈ Fn | w is codeword ∧ ∃r : dH(f(E(x; r)), w) ≤ αn},

where r is the randomness of E. That is, W is the set of all codewords that could possibly be considered
while decoding an encoding of x tampered with via f . Consider two distinct codewords w,w′ ∈ W. From
the definition of W it is apparent that w[j] 6= val(f [j]) for at most αn positions j ∈ A(f) (and similarly
for w′), which implies that w and w′ differ in at most 2αn positions j ∈ A(f). Therefore, w and w′ differ
in at least (δ − 2α)n positions j /∈ A(f).

For w ∈ W, let w̃ be the projection of w onto the unfixed positions j /∈ A(f) and set W̃ :=
{w̃ | w ∈ W}. The above distance argument implies that |W| = |W̃|. Moreover, W̃ is a binary code
with block length n− q(f) and relative distance at least

(δ − 2α)n

n− q(f)
≥ (δ − 2α)n

n/2
= 2δ − 4α > 1/2,

where the last inequality follows from the fact that δ and α are such that δ − 2α > 1/4. Therefore, by
the Plotkin bound (Theorem 42),8

|W| = |W̃| ≤ O(1).

8The size constant absorbed by O(1) here depends on how close 2δ − 4α is to 1/2.
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Denote by c = (c[1], . . . , c[n]) and c̃ = (c̃[1], . . . , c̃[n]) the (random variables corresponding to the)
encoding c = Enc(x) and the tampered encoding c̃ = f(c), respectively. For an arbitrary (n-bit) codeword
w ∈ W,

E[dH(c̃, w)] =
n∑
j=1

E[dH(c̃[j], w[j])] ≥
∑
j∈J

E[dH(c̃[j], w[j])],

where J ⊆ [n] is the set containing the indices of the first τn bits not fixed by f . Note that by the
definition of middle queries, there are at least that many, i.e., |J | = τn.

Observe that for j ∈ J , dH(c̃[j], w[j]) is an indicator variable with expectation E[dH(c̃[j], w[j])] ≥ 1
2 ,

since c[j] is a uniform bit. Thus, E[dH(c̃, w)] ≥ τn
2 .

Additionally, (dH(c̃[j], w[j]))j∈J are independent. Therefore, using a Chernoff bound (Theorem 41),
for ε > 0

P[dH(c̃, w) < (1− ε)τn/2] ≤ e−τε
2n/4.

Therefore, the probability that there exists w ∈ W for which the above does not hold is at most

|W| · e−τε2n/4 ≤ O(1) · e−τε2n/4,

by a union bound.
Suppose now that dH(c̃, w) ≥ (1− ε)τn/2 for all codewords w ∈ W. Then, over the choice of T ,9

P[∀j ∈ T : dH(c̃[j], w[j]) = 0] ≤ (1− (1− ε)τ/2)τn ≤ e−(1−ε)τ2n/2.

The lemma now follows by setting ε := 1
2 .

If q(f) < n/2 an analogous argument can be made for the difference d := c− c̃ between the encoding
and the tampered codeword, as such a query f fixes at least half of the bits of d (to 0, in fact) and
D(d) 6= ⊥ implies D(c̃) 6= ⊥.

It turns out that low and high queries always result in ⊥ or one other value.

Lemma 6. Low queries f ∈ Fset can result only in ⊥ or the originally encoded message x ∈ {0, 1}k.
High queries f ∈ Fset can result only in ⊥ or one other value xf ∈ {0, 1}k, which solely depends on f .
Furthermore, xf , if existent, can be found efficiently given f .

Proof. The statement for low queries is trivial, since a low query f cannot change the encoding beyond
the error correction bound αn.

Consider now a high query f and the following efficient procedure:

1. Compute c̃f ← f(0n).
2. Find a codeword wf with dH(wf , c̃f ) ≤ 2αn (which is possible since 2α < δ/2).
3. Output wf or ⊥ if none exists.

Consider an arbitrary encoding c and let c̃← f(c) be the tampered encoding. Assume there exists w with
dH(w, c̃) ≤ αn. Since a high query f fixes all but τn bits, dH(c̃, c̃f ) ≤ τn ≤ αn, and, thus, dH(w, c̃f ) ≤ 2αn,
by the triangle inequality. Hence, w = wf .

In other words, if the decoding algorithm Dec on c̃ finds a codeword w = wf , one can find it using
the above procedure, which also implies that high queries can only result in ⊥ or one other message
xf = D(wf ).

9Recall that |T | = τn.
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4.4.3 Hybrids

Handling middle queries. Consider the hybrid game H1 that behaves as RF , except that it answers
all middle queries by ⊥.

Lemma 7. ∆D(RF , H1) ≤ p(O(1) · e−τn/16 + e−τ
2n/4).

The proof of Lemma 7 follows a generic paradigm, at whose core is the so-called self-destruct lemma,
which deals with the indistinguishability of hybrids with the self-destruct property and is explained in
detail in Section 6. Roughly, this lemma applies whenever the first hybrid (in this case RF ) can be turned
into the second one (in this case H1) by changing (“bending”) the answers to a subset (the “bending set”)
of the possible queries to always be ⊥, and when additionally non-bent queries have a unique answer (cf.
the statement of Lemma 21). Intuitively, the lemma states that parallelism and adaptivity do not help
distinguish (much) in such cases, which allows using Lemma 5.

Proof. The lemma is proved conditioned on the message x encoded by D. To use the self-destruct lemma,
note first that both RF and H1 answer parallel tamper queries in which each component is from the set
X := F by vectors whose components are in Y := {0, 1}k ∪ {⊥}. Moreover, both hybrids use as internal
randomness a uniformly chosen element from R := {0, 1}ρ×S, where ρ is an upper bound on the number
of random bits used by Enc and S is the set of all τn-subsets T of [n]. RF answers each component of a
query f ∈ X by

g(f, (r, T )) := Dec(f(Enc(x; r)), T ).

Define B ⊆ X to be the set of all middle queries; H1 is the B-bending of RF (cf. Definition 7).
Observe that queries f /∈ B are either low or high queries. For low queries f , the unique answer is

yf = x, and for high queries f , yf = xf (cf. Lemma 6). Thus, by Lemmas 21 and 5,

∆D(RF , H1) ≤ p ·max
f∈B

P[g(f, (r, T )) 6= ⊥] ≤ p(O(1) · e−τn/16 + e−τ
2n/4),

where the probability is over the choice of (r, T ).

Handling high queries. Consider the following hybrid game H2: It differs from H1 in the way it
decodes high queries f . Instead of applying the normal decoding algorithm to the tampered codeword c̃,
it proceeds as follows:

1. Find wf (as in the proof of Lemma 6).
2. If wf does not exist, return ⊥.
3. If c̃[j] = wf [j] for all j ∈ T , return Dec(w). Otherwise, return ⊥.

Lemma 8. ∆D(H1, H2) ≤ pe−τ
2n.

Proof. The lemma is proved conditioned on the message x encoded by D and the randomness r of the
encoding. For the remainder of the proof, r is therefore considered fixed inside H1 and H2. The proof,
similarly to that of Lemma 7, again uses the self-destruct lemma.

Set X := F and Y := {0, 1}k ∪ {⊥}. However, this time, let R := S. For f ∈ X and T ∈ R, define

g(f, T ) := Dec(c̃, T ),

where c̃ := f(Enc(x; r)). The bending set B ⊆ X is the set of all high queries f such that wf exists and
dH(wf , c̃) > αn.10 It is readily verified that H2 is a parallel stateless self-destruct game (cf. Definition 6)
that behaves according to g, and that H1 is its B-bending.

10These are queries potentially accepted by H2 but not by H1.
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Consider a query f /∈ B. If f is a low query, the unique answer is yf = x; if it is a middle query,
yf = ⊥; if it is a high query, yf = xf (cf. Lemma 6). Therefore,

∆D(H1, H2) ≤ max
f∈B

P[g(f, T ) 6= ⊥] ≤ pe−τ
2n,

where the first inequality follows from the self-destruct lemma (Lemma 21) and the second one from the
fact that dH(xf , c̃) > τn for queries f ∈ B, and therefore the probability over the choice of T that it is

accepted is at most (1− τ)τn ≤ e−τ2n.

4.4.4 Simulation

By analyzing hybrid H2, one observes that low and high queries can now be answered knowing only the
query itself and the symbols of the encoding indexed by the secret trigger set T ∈ S.

Lemma 9. Consider the random experiment of distinguisher D interacting with H2. There is an efficiently
computable function Dec′ : Fset × S × {0, 1}τn → {0, 1}k ∪ {same,⊥} such that for any low or high query
f , any fixed message x, any fixed encoding c thereof, and any output T of Gen,[

Dec′(f, T, (c[j])j∈T )
]
same/x

= Dec(f(c)),

where [·]same/x is the identity function except that same is replaced by x and where (c[j])j∈T are the symbols
of c specified by T .

Proof. Consider a low query f . Due to the error correction, Dec(f(c)) is the message originally encoded if
no bit indexed by T is changed and ⊥ otherwise. Which one is the case can clearly be efficiently computed
from f , T , and (c[j])j∈T .

For high queries f the statement follows by inspecting the definition of H2 and Lemma 6.

In H2, by the τn-secrecy of the LECSS, the distribution of the symbols indexed by T is independent of
the message x encoded by D. Moreover, the distribution of T is trivially independent of x. This suggests
the following simulator sim: Initially, it chooses a random subset T from

(
[n]
τn

)
and chooses τn random

symbols (c[j])j∈T . Every component f of any tamper query is handled as follows: If f is a low or a high
query, the answer is Dec′(f, T, (c[j])j∈T ); if f is a middle query, the answer is ⊥. This implies:

Lemma 10. H2 ≡ SF ,sim.

Proof of Theorem 4. Follows from Lemmas 7, 8, and 10 and a triangle inequality.

4.5 LECSS for the Non-Malleable Code

Let F = GF(2) and α > 0. In this section we show how to construct a (k, n, δ, τ)-LECSS (E,D) (cf.
Definition 1 in Section 2) with minimum distance δ and secrecy τ over F and the following properties (as
required in Section 4.3):

• Minimum distance: δ > 1/4 + 2α and δ/2 > 2α.
• Constant rate: k/n = Ω(1).
• Constant secrecy: τ = Ω(1).

The construction combines high-distance binary codes with a recent result by Cramer et al. [11], which
essentially allows to “add” secrecy to any code of sufficient rate.

Let C be a (n, l)-code with rate R = l
n over F. In the following we write C(x) for the codeword

corresponding to x ∈ Fl and C−1(c, e) for the output of the efficient error-correction algorithm attempting
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to correct up to e errors on c, provided that e < δn/2;11 the output is ⊥ if there is no codeword within
distance e of c.

Adding secrecy. Let l be such that k < l < n. The construction by [11] combines a surjective linear
universal hash function h : Fl → Fk with C to obtain a LECSS (E,D) as follows:12

• E(x) for x ∈ {0, 1}k: Choose s ∈ {0, 1}l randomly such that h(s) = x and output c = C(s).

• D(c, e) for c ∈ {0, 1}n and e < δn/2: Compute s = C−1(c, e). If s = ⊥, output ⊥. Otherwise, output
x = h(s).

The resulting LECSS has rate ρ = k
ln and retains all distance and error-correction properties of C.

Additionally, if R is not too low, the LECSS has secrecy. More precisely, Cramer et al. prove the following
theorem:

Theorem 11 ([11]). Let τ > 0 and η > 0 be constants and H be a family of linear universal hash functions
h : Fl → Fk. Given that R ≥ ρ + η + τ + h(τ), there exists a function h ∈ H such that (E,D) achieves
secrecy τ . Moreover, such a function h can be chosen randomly with success probability 1− 2−ηn.

It should be pointed out that the version of the above theorem in [11] does not claim that any τn bits of
an encoding are uniform and independent but merely that they are independent of the message encoded.
However, by inspecting their proof, it can be seen that uniformity is guaranteed if τn ≤ l − k, which is
the case if and only if τ ≤ l

n −
k
n = R− ρ, which is clearly implied by the precondition of the theorem.

Zyablov bound. For code C, we use concatenated codes reaching the Zyablov bound:

Theorem 12. For every δ < 1/2 and all sufficiently large n, there exists a code C that is

• linear,
• efficiently encodable,
• of distance at least δn,
• allows to efficiently correct up to δn/2 errors,

and has rate

R ≥ max
0≤r≤1−h(δ+ε)

r

(
1− δ

h−1(1− r)− ε

)
,

for ε > 0 and where h(·) is the binary entropy function.

The Zyablov bound is achieved by concatenating Reed-Solomon codes with linear codes reaching the
Gilbert-Varshamaov bound (which can be found by brute-force search in this case). Alternatively,
Shen [32] showed that the bound is also reached by an explicit construction using algebraic geometric
codes.

Choice of parameters. Set α := 1/200 and δ := 1/4+2α+ε for ε := 1/500, say. Then, δ−2α > 1/4,
as required. Moreover, the rate of the Zyablov code with said distance δ can be approximated to be
R ≥ 0.0175. Setting, τ := 1/1000 yields τ + h(τ) ≤ 0.0125, leaving a possible rate for the LECSS of up
to ρ ≈ 0.005− η. Hence:

Corollary 13. For any α > 0 there exists a (k, n, δ, τ)-LECSS (E,D) with the following properties:

• Minimum distance: δ > 1/4 + 2α and δ/2 > 2α.
• Constant rate: k/n = Ω(1).
• Constant secrecy: τ = Ω(1).

11This assumes that C is efficiently decodable up to relative distance δ/2. However, while the codes we consider here have
this property, for our non-malleable code construction, it would be sufficient to have efficient error correction up to distance
2α for whatever particular choice of the constant α.

12Note that we switched the roles of l and k here in order to remain consistent with the notation in this paper.
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4.6 Impossibility for Codes without State

We show that codes without secret state (as, e.g., the ones in [17, 16, 1, 19, 10, 7, 2]) cannot achieve
(unconditional) non-malleability against parallel tampering. Specifically, we prove the following theorem:

Theorem 14. Let F := Fset. Let (Enc,Dec) be a (k, n)-code without secret state and noticeable rate.
There exists a distinguisher D asking a single parallel tampering query of size n6 such that, for all simu-
lators sim and all n large enough, ∆D(RF , SF ,sim) ≥ 1/2.

The above impossibility result requires that the rate of the code not be too small (in fact n = o(2k/6)
suffices, see Appendix B for the exact parameters). The distinguisher D is inefficient, so it might still be
possible to construct a non-malleable code against parallel tampering with only computational security.
We leave this as an interesting open question for future research.

Here, we outline an attack for the case where Dec is deterministic. A full proof and a generalization
to the setting where Dec uses (independent) randomness for (each) decoding is in Appendix B.

Proof (sketch). Roughly, a possible attack works as follows: There exists an (inefficient) extraction al-
gorithm that, by suitably tampering with an encoding in the real experiment RF , is able to recover the
original plaintext with high probability. Since (modulo some technicalities) this is not possible in the
ideal experiment SF ,sim (for any simulator sim), this constitutes a distinguishing attack.

For simplicity, suppose that the decoding algorithm Dec is deterministic. The extraction relies on the
fact that for any position i ∈ [n] with relevance in the decoding, there exist two codewords c′i and c′′i with
Dec(c′i) 6= Dec(c′′i ) and differing in position i only. From the result of a tamper query fixing all but the
ith position to correspond with the bits of c′i (or c′′i ) one can therefore infer the value of the ith bit of the
encoding. This extraction is an independent process for every (relevant) position and thus parallelizable.
In other words, a single parallel tamper query can be used to recover every relevant position of an encoding
(from which the original message can be computed by filling the non-relevant positions with arbitrary
values and applying the decoding algorithm).

5 Construction from CPA Security

In this section we show that NM-SDA security can be achieved in a black-box fashion from IND-CPA
security. Specifically, we prove that a generalization using LECSS (cf. Section 2) of the scheme by Choi
et al. [9] (dubbed the CDMW construction in the remainder of this section) is NM-SDA secure. Using
a constant-rate LECSS allows to improve the rate of the CDMW construction from Ω(1/λ2) to Ω(1/λ),
where λ is the security parameter. This abstraction might also give a deeper understanding of the result
of [9]. The main difficulty in the analysis is to extend their proof to deal with adaptively chosen parallel
decryption queries (with self-destruct).

5.1 The CDMW construction.

The CDMW construction uses a randomized Reed-Solomon code, which is captured as a special case by the
notion of a linear error-correcting sharing scheme (LECSS) (E,D) (cf. Section 2). For ease of description,
we assume that the decoding algorithm returns not only the plaintext x but also the corresponding
codeword w, i.e., (x,w) ← D(c, e), where e ∈ N specifies the number of errors to correct; moreover, the
output is (x,w) = (⊥,⊥) if c is not within distance e of any codeword.

The LECSS has to satisfy an additional property, which is that given a certain number of symbols
chosen uniformly at random and independently and a plaintext x, one can efficiently produce an encoding
that matches the given symbols and has the same distribution as E(x). It is described in more detail in
the proof of Lemma 20, where it is needed.13

13Of course, the Reed-Solomon-based LECSS from [9] has this property.
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PKE Scheme Π′ = (KG ′, E′, D′)

Key Generation KG ′

for (b, i, j) ∈ {0, 1} × [κ]× [n]

(pkbi,j , sk
b
i,j)← KG

PK← (pkbi,j)b,i,j
SK← (skbi,j)b,i,j

T ←$

(
[n]
τn

)
return (PK, (SK, T ))

Encryption E′PK(m)
(c1, . . . , cn)← E(m)
(verk, sigk)← KGots

(v[1], . . . , v[κ])← verk
for (i, j) ∈ [κ]× [n]

ei,j ← E
pk

v[i]
i,j

(cj)

E← (ei,j)i,j
σ ← Ssigk(E)
return (E, verk, σ)

Decryption D′(SK,T )(E, verk, σ)

if Vverk(E, σ) = 0
return ⊥

for j ∈ T
decrypt jth column of E
if not all entries identical

return ⊥
decrypt first row of E to c
(m,w)← D(c, αn)
if w = ⊥ or ∃j ∈ T : cj 6= wj

return ⊥
return m

Figure 5: The CDMW PKE scheme Π′ constructed from a CPA-secure scheme Π [9].

Let Π = (KG , E,D) be a PKE scheme with message spaceM = {0, 1}` (we assume ` = Ω(λ)), and let
Σ = (KGots, S, V ) be a one-time signature scheme with verification keys of length κ = O(λ). Moreover,
let α > 0 be any constant and (E,D) a (k, n, δ, τ)-LECSS over GF(2`) with δ > 2α.

The CDMW construction (cf. Figure 5), to encrypt a plaintextm ∈ {0, 1}k`, first computes an encoding
(c1, . . . , cn) ← E(m) and then creates the (κ × n)-matrix C in which this encoding is repeated in every
row. For every entry Cij of this matrix, there are two possible public keys pkbi,j ; which of them is used to

encrypt the entry is determined by the ith bit v[i] of the verification key verk = (v[1], . . . , v[κ]) of a freshly
generated key pair for Σ. In the end, the encrypted matrix E is signed using verk, producing a signature
σ. The ciphertext is (E, verk, σ).

The decryption first verifies the signature. Then, it decrypts all columns indexed by a set T ⊂ [n],
chosen as part of the secret key, and checks that each column consists of a single value only. Finally,
it decrypts the first row and tries to find a codeword with relative distance at most α. If so, it checks
whether the codeword matches the first row in the positions indexed by T . If all checks pass, it outputs
the plaintext corresponding to the codeword; otherwise it outputs ⊥.

In the remainder of this section, we sketch the proof of the following theorem, which implies Theorem 2.

Theorem 15. Let t ∈ N and Π be a (t + tcpa, εcpa)-IND-CPA-secure PKE scheme, α > 0, (E,D) a
(k, n, δ, τ)-LECSS with δ > 2α, and Σ a (t+ tots, εots)-secure OTS scheme with verification-key length κ.
Then, for any q, p ∈ N, PKE scheme Π′ is (t, q, p, ε)-NM-SDA-secure with

ε = (1− τ)κn · εcpa + 2 · εots + 4 · p(1− τ)αn,

where tcpa and tots represent the overhead incurred by corresponding reductions.

Instantiating the construction. Note that the security proof below does not use the linearity of the
LECSS. The CDMW construction can be seen as using a Reed-Solomon-based LECSS with rate O(1/κ).
If the construction is instantiated with a constant-rate LECSS, the final rate improves over CDMW by
a factor of Ω(κ) = Ω(λ). More concretely, assuming a constant-rate CPA encryption, a ciphertext of
length O(λ3) can encrypt a plaintext of length Ω(λ2) as compared to Ω(λ) for plain CDMW. As shown
in Section 5.3, the LECSS can be instantiated with constructions based on Reed-Solomon or algebraic
geometric codes (which also satisfy the additional property mentioned above), both with constant rate.
Among the constant-rate codes, algebraic geometric codes allow to choose the parameters optimally also
for shorter plaintexts.
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5.2 Security Proof of the CDMW Construction

5.2.1 Overview

The proof follows the original one by [9]. The main change is that one needs to argue that, unless they
contain invalid ciphertexts, adaptively chosen parallel queries do not allow the attacker to obtain useful
information, in particular on the secret set T . This is facilitated by using the self-destruct lemma (cf.
Section 6). The proof proceeds in three steps using two hybrid games Hb and H ′b:

• The first hybrid Hb gets rid of signature forgeries for the verification key used to create the challenge

ciphertext. The indistinguishability of the hybrid from GΠ′,nm-sda
b follows from the security of the

OTS scheme and requires only minor modifications compared to the original proof.
• The second hybrid H ′b uses an alternative decryption algorithm. The indistinguishability of H ′b and
Hb holds unconditionally; this step requires new techniques compared to the original proof.

• Finally, the distinguishing advantage between H ′0 and H ′1 is bounded by a reduction to the IND-CPA
security of the underlying scheme Π; the reduction again resembles the one in [9].

5.2.2 Dealing with Forgeries

For b ∈ {0, 1}, hybrid Hb behaves as GΠ′,nm-sda
b but generates the signature key pair (sigk∗, verk∗) used for

the challenge ciphertext initially and rejects any decryption query (E′, σ′, verk′) if verk′ = verk∗.

Lemma 16. For b ∈ {0, 1}, there exists a reduction R′b(·) such that for all distinguishers D,

∆D(GΠ′,nm-sda
b , Hb) ≤ ΓR

′
b(D)(GΣ,ots).

Proof. R′b(·) is a standard reduction to the unforgeability of Σ.

5.2.3 Alternative Decryption Algorithm

For b ∈ {0, 1}, hybrid H ′b behaves as Hb but for the way it answers decryption queries (E′, σ′, verk′): As
before, it first verifies the signature σ′ and checks that each column of E′ consists of encryptions of a
single value. Then, it determines the first position i at which verk′ and verk∗ differ, i.e., where v′[i] 6= v∗[i].
It decrypts the ith row of E and checks if there is a codeword w within distance 2αn.14 If such w does
not exist or else if w does not match the first row in a position indexed by T , the check fails. Otherwise,
the plaintext corresponding to w is output.

Lemma 17. For b ∈ {0, 1} and all distinguishers D, ∆D(Hb, H
′
b) ≤ 2 · p(1− τ)αn.

The proof of Lemma 17 shows that the original and alternative decryption algorithms are indistin-
guishable not just for a single parallel query (as is sufficient for NM-CPA) but even against adaptively
chosen parallel queries (with self-destruct). It is the main technical contribution of this section.

At the core of the proof is an analysis of how different types of encoding matrices C are handled
inside the two decryption algorithms. To that end, one can define two games B and B′ (below) that
capture the behaviors of the original and the alternative decryption algorithms, respectively. The proof is
completed by bounding ∆(B,B′) (for all distinguishers) and showing the existence of a wrapper Wb such
that Wb(B) behaves as Hb and Wb(B

′) as H ′b (also below). This proves the lemma since ∆D(Hb, H
′
b) =

∆D(Wb(B),Wb(B
′)) = ∆D(Wb(·))(B,B′).

The games B and B′ behave as follows: Both initially choose a random size-τ subset of [n]. Then,
they accept parallel queries with components of the type (C, i) for C ∈ Fκ×n and i ∈ [κ]. The answer to
each component is computed as follows:

14Recall that the actual decryption algorithm always decrypts the first row and tries to find w within distance αn.
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1. Both games check that all columns indexed by T consist of identical entries.
2. Game B tries to find a codeword w with distance less than αn from the first row (regardless of i),

whereas B′ tries to find w within 2αn of row i. Then, if such a w is found, both games check that
it matches the first row of C in the positions indexed by T .

3. If all checks succeed, the answer to the (component) query is w; otherwise, it is ⊥.

Both games then output the answer vector and implement the self-destruct, i.e., if any of the answers is
⊥, all future queries are answered by ⊥.

Claim 18. For b ∈ {0, 1} and all distinguishers D, ∆D(B,B′) ≤ 2 · p(1− τ)αn.

Encoding matrices. Towards a proof of Claim 18, consider the following partition of the set of encoding
matrices C (based on the classification in [9]):

1. There exists a codeword w within αn of the first row of C, and all rows have distance at most αn.
2. (a) There exist two rows in C with distance greater than αn.

(b) The rest; in this case the first row differs in more than αn positions from any codeword.

Observe that queries (C, i) with C of type 1 are treated identically by both B and B′: A codeword w
within αn of the first row of C is certainly found by B; since all rows have distance at most αn, w is
within 2αn of row i and thus also found by B′. Furthermore, note that if C is of type 2b, it is always
rejected by B (but not necessarily by B′).

Consider the hybrids C and C ′ that behave as B and B′, respectively, but always reject all type-2
queries. Since type-1 queries are treated identically, C and C ′ are indistinguishable. Moreover:

Claim 19. For all distinguishers D,

∆D(B,C) ≤ p(1− τ)αn and ∆D(C ′, B′) ≤ p(1− τ)αn.

The proof of Claim 19 follows a generic paradigm, at whose core is the so-called self-destruct lemma,
which deals with the indistinguishability of hybrids with the self-destruct property and is explained in
detail in Section 6. Roughly, this lemma applies whenever the first hybrid (in this case B resp. B′) can
be turned into the second one (in this case C resp. C ′) by changing (“bending”) the answers to a subset
(the “bending set”) of the possible queries to always be ⊥, and when additionally non-bent queries have
a unique answer (cf. the statement of Lemma 21). Intuitively, the lemma states that parallelism and
adaptivity do not help distinguish (much) in such cases.

Proof. To use the self-destruct lemma, note that B, C, C ′, and B′ all answer queries from X := Fκ×n× [κ]
by values from Y := Fn. Moreover, note that they use as internal randomness a uniformly chosen element
T from the set R :=

(
[n]
τn

)
of size-τn subsets of [n].

Consider first B and C. Let g : X ×R → Y correspond to how B answers queries (C, i) (see above).
Let B be the set B of all type-2a-queries. Then, C is its B-bending (cf. Definition 7). Observe that queries
x = (C, i) /∈ B are either of type 1 or 2b. For the former, the unique answer yx is the codeword w within
αn of the first row of C; for the latter, yx is ⊥. Therefore, using the self-destruct lemma (Lemma 21), for
all distinguishers D,

∆D(B,C) ≤ p · max
(C,i)∈B

P[g((C, i), T ) 6= ⊥],

where the probability is over the choice of T . Since type-2a queries have two rows with distance greater
than αn, the probability over the choice of T that this remains unnoticed is at most (1− τ)αn.

For the second part of the claim, consider B′ and C ′. Now, let g : X × R → Y correspond to how
B′ answers queries (C, i) (see above again), and let B be the set B of all type-2-queries. Then, C ′ is the
B-bending of B′.
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Note that all queries x = (C, i) /∈ B′ are of type 1, and the unique answer yx is the codeword w within
2αn of row i of C. Therefore, using Lemma 21 again, for all distinguishers D,

∆D(B′, C ′) ≤ p · max
(C,i)∈B′

P[g′((C, i), T ) 6= ⊥],

where the probability is again over the choice of T . Since type-2a queries have two rows with distance
greater than αn and in type-2b queries the first row differs in more than αn positions from any codeword,
the probability over the choice of T that this remains unnoticed is at most (1− τ)αn.

Proof (of Claim 18). The proof follows using the triangle inequality:

∆D(B,B′) ≤ ∆D(B,C) + ∆D(C,C ′) + ∆D(C ′, B′) ≤ 2 · p(1− τ)αn.

Wrapper. It remains to show that there exists a wrapper Wb such that Wb(B) behaves as Hb and Wb(B
′)

as H ′b. The construction of Wb is straight forward: Hb and H ′b generate all keys and the challenge in the
identical fashion; therefore, Wb can do it the same way. Wb answers decryption queries (E′, verk′, σ′) by
first verifying the signature σ′ and rejecting queries if σ′ is invalid or if verk′ is identical to the verification
key verk∗ chosen for the challenge, decrypting the entire matrix E′ to C′ and submitting (C′, i) to the
oracle (either B or B′), where i is the first position at which verk′ and verk∗ differ, and decoding the
answer w and outputting the result or simply forwarding it if it is ⊥. Moreover, Wb implements the
self-destruct. By inspection it can be seen that Wb(B) implements the original decryption algorithm and
Wb(B

′) the alternative one.

5.2.4 Reduction to IND-CPA Security

Lemma 20. There exists a reduction R(·) such that for all distinguishers D,

∆D(H ′0, H
′
1) = (1− τ)κn ·∆D(R(·))(GΠ,ind-cpa

0 , GΠ,ind-cpa
1 ).

Proof (sketch). The proof is a straight-forward generalization of the original proof by [9]; the only dif-
ference is that it needs to process multiple parallel decryption queries and implement the self-destruct
feature appropriately. For ease of exposition, we describe the reduction to a many-public-key version of
the CPA game for Π.15

Reduction R(·) initially chooses the secret set T and creates the challenge OTS key pair with verifi-
cation key verk∗ = (v∗[1], . . . , v∗[κ]) and all key pairs (pkbi,j , sk

b
i,j) with j ∈ T or b 6= v∗[i]. The remaining

(1− τ)κn key pairs are generated by the CPA game.
Recall that the LECSS is assumed to satisfy the following property: Given τn symbols (ci)i∈T chosen

uniformly at random and independently and any plaintext x ∈ Fk, one can efficiently sample symbols
(ci)i/∈T such that (c1, . . . , cn) has the same distribution as E(x). Using this fact, R(·) creates the challenge
for m0 and m1 as follows: It picks the random symbols (ci)i∈T and completes them to two full encodings
cm0 and cm1 with the above procedure, once using m0 and once using m1 as the plaintext. Let Cm0

and Cm1 be the corresponding matrices (obtained by copying the encodings κ times). Observe that
the two matrices match in the columns indexed by T . These entries are encrypted by R(·), using the
public key pkbi,j for entry (i, j) for which b 6= v∗[i]. Denote by C′m0

and C′m1
the matrices Cm0 and Cm1

with the columns in T removed. The reduction outputs (chall,C′m0
,C′m1

) to its oracle and obtains the
corresponding ciphertexts, which it combines appropriately with the ones it created itself to form the
challenge ciphertext.

Finally, note that since the reduction knows all the secret keys pkbi,j with b 6= v∗[i], it can implement
the alternative decryption algorithm (and the self-destruct).

15In the many-public-key version of the CPA game, an attacker can play the CPA game for several independently generated
public keys simultaneously; this is equivalent to the normal formulation by a standard hybrid argument [3].
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5.2.5 Overall Proof

Proof (of Theorem 15). Let tcpa be the overhead caused by reduction R(·) and tots the larger of the
overheads caused by R′0(·) and R′1(·). Moreover, let D be a distinguisher with running time at most t.
Using the triangle inequality, and Lemmas 16, 17, and 20,

∆D(GΠ′,nm-sda
0 , GΠ′,nm-sda

1 ) ≤ ∆D(GΠ′,nm-sda
0 , H0) + ∆D(H0, H

′
0)

+ ∆D(H ′0, H
′
1) + ∆D(H ′1, H1) + ∆D(H1, G

Π′,nm-sda
1 )

≤ ΓD(R′0(·))(GΣ,ots) + 2 · p(1− τ)αn

+ (1− τ)κn ·∆D(R(·))(GΠ,ind-cpa
0 , GΠ,ind-cpa

1 )

+ 2 · p(1− τ)αn + ΓD(R′1(·))(GΣ,ots)

≤ εots + 2 · p(1− τ)αn

+ (1− τ)κn · εcpa + 2 · p(1− τ)αn + εots.

5.3 LECSS for the CDMW Construction

In this section we show how to instantiate the LECSS used for the CDMW construction in Section 5.
Let F be a finite field of size L = 2`, where ` is the plaintext length of the IND-CPA scheme used in the
construction. Then, there are the following variants of a (k, n, δ, τ)-LECSS:

• CDMW Reed-Solomon codes: The original CDMW construction can be seen as using a Reed-
Solomon-based LECSS with rate Θ(1/λ), which is suboptimal (see next item).

• Constant-Rate Reed-Solomon codes: Cheraghchi and Guruswami [8] provide a LECSS based on a
construction by Dziembowski et al. [17] and on Reed-Solomon (RS) codes with ` = Θ(log n). One
can show that it achieves the following parameters (not optimized): α = 1/8, τ = 1/8 and rate
k/n ≥ 1/4 (i.e., all constant).

• Algebraic geometric codes: Using algebraic geometric (AG) codes, Cramer et al. [12] provide a
LECSS with ` = O(1) and still constant error correction, secrecy, and rate (but with worse concrete
constants than Reed-Solomon codes).

Note that asymptotically, RS and AG codes are equally good: both have constant rate, distance, and
secrecy. However, since with AG codes ` is constant (i.e., they work over an alphabet of constant size),
the minimal plaintext length can be shorter than with RS codes.

6 A General Indistinguishability Paradigm

A recurring issue in this paper are proofs that certain self-destruct games answering successive parallel
decryption/tampering queries are indistinguishable. We formalize such games as parallel stateless self-
destruct games.

Definition 6. An oracle U is a parallel stateless self-destruct (PSSD) game if

• it accepts parallel queries in which each component is from some set X and answers them by vectors
with components from some set Y,

• ⊥ ∈ Y,
• there exists a function g : X × R → Y such that every query component x ∈ X is answered by
g(x, r), where r ∈ R is the internal randomness of U , and

• the game self-destructs, i.e., after the first occurrence of ⊥ in an answer vector all further outputs
are ⊥.
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A PSSD game can be transformed into a related one by “bending” the answers to some of the queries
x ∈ X to the value ⊥. This is captured by the following definition:

Definition 7. Let U be a PSSD game that behaves according to g and let B ⊆ X . The B-bending of U ,
denoted by U ′, is the PSSD game that behaves according to g′, where

g′(x, r) =

{
⊥ if x ∈ B,

g(x, r) otherwise.

The self-destruct lemma below states that in order to bound the distinguishing advantage between a
PSSD and its bending, one merely needs to analyze a single, non-parallel query, provided that all non-bent
queries x can only be answered by a unique value yx or ⊥.

Lemma 21. Let U be a PSSD game and U ′ its B-bending for some B ⊆ X . If for all x /∈ B there exists
yx ∈ Y such that

{g(x, r) | r ∈ R} = {yx,⊥},

then, for all distinguishers D,

∆D(U,U ′) ≤ p ·max
x∈B

P[g(x,R) 6= ⊥],

where the probability is over the choice of R.

Proof. Fix a distinguisher D and denote by R and R′ the random variables corresponding to the internal
randomness of U and U ′, respectively. Call a value x ∈ X dangerous if x ∈ B and a query dangerous if it
contains a dangerous value.

In the random experiment corresponding to the interaction between D and U , define the event E that
the first dangerous query contains a dangerous value X with g(X,R) 6= ⊥ and that the self-destruct has
not been provoked yet. Similarly, define the event E′ for the interaction between D and U ′ that the first
dangerous query contains a dangerous value X ′ with g(X ′, R′) 6= ⊥ and that the self-destruct has not
been provoked yet.16

Clearly, U and U ′ behave identically unless E resp. E′ occur. Thus, it remains to bound P[E] = P[E′].
To that end, note that adaptivity does not help in provoking E. For any distinguisher D, there exists
a non-adaptive distinguisher D̃ such that whenever D provokes E, so does D′. D′ proceeds as follows:
First, it interacts with D only. Whenever D asks a non-dangerous query, D′ answers every component
x /∈ B by yx. As soon as D specifies a dangerous query, D′ stops its interaction with D and sends all
queries to U .

Fix all randomness in experiment D′(U), i.e., the coins of D (inside D′) and the randomness r of U .
Suppose D would provoke E in the direct interaction with U . In such a case, all the answers by D′ are
equal to the answers by U , since, by assumption, the answers to components x /∈ B in non-dangerous
queries are yx or ⊥ and the latter is excluded if E is provoked. Thus, whenever D provokes E, D′ provokes
it as well.

The success probability of non-adaptive distinguishers D is upper bounded by the probability over R
that their first dangerous query provokes E, which is at most p ·maxx∈B P[g(x,R) 6= ⊥].

16Note that the function g is the same in the definitions of either event.
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[11] Ronald Cramer, Ivan Bjerre Damg̊ard, Nico Döttling, Serge Fehr, and Gabriele Spini. Linear secret
sharing schemes from error correcting codes and universal hash functions. In EUROCRYPT, pages
313–336, 2015.

[12] Ronald Cramer, Goichiro Hanaoka, Dennis Hofheinz, Hideki Imai, Eike Kiltz, Rafael Pass, Abhi
Shelat, and Vinod Vaikuntanathan. Bounded CCA2-secure encryption. In ASIACRYPT, pages
502–518, 2007.

[13] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In CRYPTO, volume 1462 of LNCS, pages 13–25, 1998.

[14] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen cipher-
text secure public-key encryption. In EUROCRYPT, pages 45–64, 2002.

[15] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM J. Comput.,
30(2):391–437, 2000.

[16] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes from two-source
extractors. In CRYPTO (2), pages 239–257, 2013.

[17] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In ICS, pages
434–452, 2010.

22



[18] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. Continuous non-
malleable codes. In TCC, pages 465–488, 2014.

[19] Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Efficient non-malleable
codes and key-derivation for poly-size tampering circuits. In EUROCRYPT, pages 111–128, 2014.

[20] Yael Gertner, Tal Malkin, and Steven Myers. Towards a separation of semantic and CCA security
for public key encryption. In TCC, pages 434–455, 2007.

[21] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299,
1984.

[22] Dennis Hofheinz and Eike Kiltz. Practical chosen ciphertext secure encryption from factoring. In
EUROCRYPT, pages 313–332, 2009.

[23] Susan Hohenberger, Allison B. Lewko, and Brent Waters. Detecting dangerous queries: A new
approach for chosen ciphertext security. In EUROCRYPT, pages 663–681, 2012.

[24] Kaoru Kurosawa and Yvo Desmedt. A new paradigm of hybrid encryption scheme. In CRYPTO,
pages 426–442, 2004.

[25] Yehuda Lindell. A simpler construction of cca2-secure public-key encryption under general assump-
tions. In EUROCRYPT, pages 241–254, 2003.

[26] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. North-holland Pub-
lishing Company, 2nd edition, 1978.

[27] Steven Myers and Abhi Shelat. Bit encryption is complete. In FOCS, pages 607–616, 2009.

[28] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In STOC, pages 427–437, 1990.

[29] Rafael Pass, Abhi Shelat, and Vinod Vaikuntanathan. Construction of a non-malleable encryption
scheme from any semantically secure one. In CRYPTO, pages 271–289, 2006.

[30] Rafael Pass, Abhi Shelat, and Vinod Vaikuntanathan. Relations among notions of non-malleability
for encryption. In ASIACRYPT, pages 519–535, 2007.

[31] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security.
In FOCS, pages 543–553, 1999.

[32] Ba-Zhong Shen. A justesen construction of binary concatenated codes that asymptotically meet the
zyablov bound for low rate. IEEE Transactions on Information Theory, 39(1):239–242, 1993.

23



PKE Scheme Π′ = (KG ′, E′, D′)

Key Generation KG ′

(pk, sk)← KG

ρ←$ {0, 1}λ
pk′ = pk
sk′ = (ρ, sk)
return (pk′, sk′)

Encryption E′
pk′

(m)

e← Epk(m)
e′ = 0‖e
return e

Decryption D′
sk′

(e′)

e′ = β ‖e
m← Dsk(e)
if β = 1

return ρ
else

if m = ρ
return sk

else
return m

Figure 6: PKE scheme Π′ in the proof of Theorem 22

A Relating IND-SDA and NM-CPA

Theorem 22. IND-SDA and NM-CPA are incomparable notions:

(i) Assume there exists a PKE scheme Π that is NM-CPA secure. Then there exists a PKE scheme Π′

that is NM-CPA secure but not IND-SDA secure.

(ii) Assume there exists a PKE scheme Π that is IND-SDA secure. Then there exists a PKE scheme
Π′′ that is IND-SDA secure but not NM-CPA secure.

The proof follows the following intuition: Towards proving (i), an assumed non-malleable PKE scheme
is modified as follows: An additional 0-bit is added to every ciphertext. If it is changed to 1 by an adversary,
the decryption algorithm outputs a secret random value ρ (from a sufficiently large space) instead of the
normal decryption, and when the decryption algorithm is fed with an encryption of ρ, it outputs the
secret key. The modified scheme is not IND-SDA-secure since an adversary can obtain the secret key
by making just two adaptive decryption queries. It is, however, still non-malleable since a non-adaptive
adversary can only try to guess ρ.

For (ii), an IND-SDA-secure PKE scheme is modified as follows: Prior to encrypting a message, it is
encoded using a code with the property that a sufficiently large fraction of the bits of the encoding are
random. Similarly to above, ciphertexts have a format that allows an adversary, using the decryption
oracle, to guess a bit of this encoding, where a wrong guess leads to a self-destruct. Since, by definition, an
adversary can ask arbitrarily many (non-adaptively chosen) invalid ciphertexts in the NM-CPA game, he
can recover the entire encoding of the message. At the same time, due to the randomness of the encoding,
an adversary trying to guess the bits of the encoding sequentially is highly likely to produce a self-destruct
in the process. Therefore, the modified scheme is not non-malleable, but it is still IND-SDA-secure.

Proof. We prove the two statements separately.
(i) Let Π = (KG , E,D) be a PKE scheme that is NM-CPA secure, with message space M = {0, 1}λ

for some value λ that is superpolynomial in the security parameter λ ∈ N. Consider the PKE scheme
Π′ = (KG ′, E′, D′), derived from Π, depicted in Figure 6. A secret key generated via KG ′ consists of a
valid secret key for Π, together with a random string ρ←$ {0, 1}λ. A ciphertext generated via E′ consists
of a valid ciphertext generated via E, to which we append a single bit β that is usually set to 0 in honestly
generated ciphertexts. Upon input a ciphertext with β = 0, the decryption algorithm D′ behaves as D
except that it returns the secret key in case the ciphertext decrypts to ρ; ciphertexts with β = 1 are
always decrypted to ρ.

Claim 23. There exists a distinguisher D such that ∆D(GΠ′,2,1
0 , GΠ′,2,1

1 ) = 1.
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Proof. Consider the following distinguisher D that breaks IND-SDA security of Π′ with probability 1,
using two adaptive decryption queries, and without ever provoking a self-destruct. Given the challenge
ciphertext e, the distinguisher creates e1 = 1 ‖ ē where ē ← Epk(m̄) for a fixed message m̄ ∈ M, and
queries (dec, e1); note that the answer to such query will be the value ρ (no matter what the value of m̄
is). Given ρ, the distinguisher encrypts e2←$ 0‖eρ where eρ ← Epk(ρ) and queries (dec, e2). Note that,
by definition of Π′, the answer to such query will be the secret key sk that can be used to decrypt the
challenge ciphertext e with probability 1.

Claim 24. For all p ∈ N, and for all distinguishers D′, there exists a distinguisher D such that

∆D(GΠ,1,p
0 , GΠ,1,p

1 ) ≥ ∆D′(GΠ′,1,p
0 , GΠ′,1,p

1 )− p · 2−λ.

Proof. We build distinguisher D (based on D′) as follows:

1. At the beginning D samples a random ρ←$ {0, 1}λ (but not sk), and forwards the public key pk it
receives from game GΠ,nm-cpa

b to D′.

2. Upon input (chall,m0,m1) from D′, distinguisher D calls (chall,m0,m1) to its own challenge oracle
obtaining a ciphertext e, and returns e′ := 0‖e to D′.

3. Upon input the decryption query (dec, e′1, . . . , e
′
p) from D′, distinguisher D parses e′i = βi ‖ei for all

i ∈ [p] and queries (dec, e1, . . . , ep) to its own decryption oracle, obtaining (m1, . . . ,mp). Hence, D
proceeds as follows for each i ∈ [p]:

• In case βi = 1, replace mi with mi := ρ.

• In case mi = ρ, abort.

Return (m1, . . . ,mp).

4. Output whatever D′ outputs.

Note that D perfectly simulates the key generation of Π′ (this is because the value ρ is chosen uniformly
and independently by D). The same holds for the simulation of the challenge ciphertext. Furthermore,
the simulation of the parallel decryption query is perfect unless D aborts; thus, it suffices to bound the
probability that D aborts. By the union bound, this probability is at most p ·2−λ. The claim follows.

The two claims above conclude the proof of statement (i), by observing that λ and p are, respectively,
super-polynomial and polynomial in λ.

(ii) Let Π = (KG , E,D) be a PKE scheme, with message spaceM = {0, 1}n, that is IND-SDA secure.
Moreover let (Enc,Dec) be a (k, n)-encoding scheme with the property that the bits of a codeword are
individually uniform and τn-wise independent (over the randomness of the encoding). Consider the PKE
scheme Π′′ = (KG ′′, E′′, D′′), with message spaceM′′ = {0, 1}k, obtained from Π as depicted in Figure 7.
The key generation is identical in the two schemes, except that KG ′′ includes a message m̄←$ {0, 1}k in
the public key. The encryption algorithm first encodes the plaintext m obtaining a codeword c, encrypts
c via pk, and appends to the ciphertext two bits β1, β2 ∈ {0, 1} and a special value α ∈ [n] (normally
set to 0). The decryption algorithm simply decrypts the ciphertext and runs the decoding algorithm, in
case β1 = 0. Otherwise it checks that the bit in position α of c equals β2; if this is the case it returns the
message m̄, else it returns ⊥.

Claim 25. There exists a distinguisher D′′ such that ∆D′′(GΠ′′,1,n
0 , GΠ′′,1,n

1 ) = 1.
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PKE Scheme Π′′ = (KG ′′, E′′, D′′)

Key Generation KG ′′

(pk, sk)← KG

m̄←$ {0, 1}k
pk′′ = (pk, m̄)
sk′′ = sk
return (pk′′, sk′′)

Encryption E′′
pk′′

(m)

c← Enc(m)
e← Epk(c)
e′′ = 0‖0‖0‖e
return e′′

Decryption D′′
sk′′

(e′′)

e′′ = β1 ‖β2 ‖α‖e
c← Dsk(e)
m← Dec(c)
if β1 = 0

if (β2 = 0) ∧ (ctr = 0)
return m

else
return ⊥

else
if (m′[α] = β2)

return m̄
else

return ⊥

Figure 7: PKE scheme Π′′ in the proof of Theorem 22

Proof. Consider the following distinguisher D′′ playing the NM-CPA game. At the beginning D′′ receives
the public key (pk, m̄), and issues (chall,m0,m1), for some m0,m1, obtaining a challenge e′′ = (0‖0‖0‖e).

Next, D′′ defines a sequence of n ciphertexts e1, . . . , en and issues (dec, e1, . . . , en). For all i ∈ [n], the
i-th ciphertext ei has a type (1‖β2,i ‖ i‖e) where β2,i is a guess for c[i] (i.e., the i-th bit of the codeword
c← Dsk(e)).

Let (m1, . . . ,mn) be the answer from the decryption oracle. Distinguisher D′′ defines a codeword
c = (c[1], . . . , c[n]) where c[i] = β2,i if m = m̄ (and c[i] = 1 − β2,i otherwise).17 By inspection, this is
exactly the codeword c encoding the challenge, and thus D′′ wins the game with probability 1.18

Claim 26. For all q ∈ N, and for all distinguishers D′′, there exists a distinguisher D such that

∆D(GΠ,q,1
0 , GΠ,q,1

1 ) ≥ ∆D′′(GΠ′′,q,1
0 , GΠ′′,q,1

1 )− 2−τn.

Proof. We build distinguisher D (based on D′′) as follows:

1. At the beginning D samples m̄←$ {0, 1}k, and forwards pk′′ = (pk, m̄) to D′′, where pk is the public
key it receives from its own challenger. Furthermore D samples n uniform and independent bits
b = (b1, . . . , bn).

2. Upon input (chall,m0,m1) at the inside, D defines c0 ← Enc(m0) and c1 ← Enc(m1) and issues
(chall, c0, c1) to its own challenger. Given the challenge ciphertext e, distinguisher D returns e′′ :=
(0‖0‖0‖e) to D′′.

3. For all i ∈ [q], upon input the i-th decryption query (dec, e′′i ) from D′′, distinguisher D parses
e′′i = (β1,i ‖β2,i ‖αi ‖ei) and proceeds as follows:

(a) If β1,i = β2,i = 0 and αi = 0, issue (dec, ei) to the decryption oracle receiving a value ci ∈ {0, 1}n
and compute mi ← Dec(ci); return mi to D′′.

(b) If β1,i = 0 and αi 6= 0 or β2,i 6= 0, output ⊥ and self-destruct.

(c) If β1,i = 1, check whether b[αi] = β2,i; if that is the case return m̄, and otherwise return ⊥ and
self-destruct.

17Recall that, by definition of Π′′, the values m̄ and ⊥ are the only possible outcomes for each of the mi.
18The latter holds true in case the encryption scheme and the encoding scheme have perfect correctness. However, it is

straightforward to generalize the proof to the case of a small correctness error.
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4. D outputs whatever D′′ does.

Clearly D perfectly simulates the public key and the challenge ciphertext. As for decryption queries, the
simulation for queries of type 3(a) and 3(b) is also perfect. Define the event E that D′′ issues more than
τn decryption queries of type 3(c), such that the guess β2,i for b[αi] is correct. It easy to see that in case
E does not happen, the simulation of decryption queries with type 3(c) is correct, because any subset of
dimension up to τn of the codeword c corresponding to the challenge ciphertext is uniformly distributed.
Thus, it suffices to bound the probability of the event E which is at most 2−τn. The claim follows.

The two claims above imply statement (ii), by setting τ to be super-logarithmic in the security
parameter λ.19

B Necessity of Codes with Secret State

We show that codes without secret state, as defined below, (e.g., those in [17, 16, 1, 19, 10, 7, 2]) cannot
achieve (unconditional) non-malleability against parallel tampering—already for the case q = 1.

Definition 8 (Code without secret state). A (k, n)-code is a pair of algorithms (Enc,Dec), where the
(randomized) encoding algorithm Enc takes a k-bit plaintext x and outputs an n-bit encoding c← Enc(x),
and the (randomized) decoding algorithm Dec takes an n-bit encoding c and outputs a k-bit plaintext
x← Dec(c) or the special symbol ⊥, indicating an invalid encoding.

We prove the following theorem:

Theorem 14. Let F := Fset. Let (Enc,Dec) be a (k, n)-code without secret state and noticeable rate.
There exists a distinguisher D asking a single parallel tampering query of size n6 such that, for all simu-
lators sim and all n large enough, ∆D(RF , SF ,sim) ≥ 1/2.

The above impossibility result requires that the rate of the code not be too small (in fact n = o(2k/6)
suffices, see below for the exact parameters). The distinguisher D is inefficient, so it might still be possible
to construct a non-malleable code against parallel tampering with only computational security. We leave
this as an interesting open question for future research.

The proof of the above theorem follows directly by the following lemma:

Lemma 27. Let F := Fset. Let (Enc,Dec) be a (k, n)-code without secret state, and with correctness
error ν < 1/2− 1/n. There exists a distinguisher D such that, for all simulators sim,

∆D(RF , SF ,sim) ≥ 1− (ν + 2/n+ 2ne−1/2n + (2n6 + 1) · 2−k).

The distinguisher D asks a single tampering query (i.e., q = 1) with p = n6.

It remains to prove Lemma 27. The proof is non constructive, meaning that the distinguisher D
depends on some “auxiliary information” that is fixed once the code is given, but might be hard to
compute. However, as we show below, such auxiliary information always exists (for any code) provided
that the correctness error of the code is not too large (but a good code would typically have a small
correctness error).

We discuss some intuition for the proof of Lemma 27. The main idea is to define an extraction
algorithm that (almost) always succeeds to extract the encoded message when it interacts with RF , but
only does so with a small probability when interacting with SF ,sim (for any sim). For simplicity, let us
first assume that decoding is deterministic and that the code has perfect correctness (i.e, ν = 0). Define
a position i ∈ [n] to be relevant if there exists a pair of codewords (c′i, c

′′
i ), differing only at position i,

for which decoding c′i and c′′i leads to different values. One can show that the set of all relevant position

19Suitable encoding schemes (Enc,Dec) with such τ exist unconditionally [17].
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is not empty (by correctness of the code), and is always fixed once the coding scheme is given (this is
because the code has no secret state). Additionally, in order to decode any codeword c ∈ {0, 1}n, one
needs to know only the values c[i] for the relevant positions; all other values can be set to 0 and play no
role in decoding a codeword.

Consider now the following distinguisher D that is given a set of pairs (c′i, c
′′
i ), one for each relevant

position i ∈ [n]. At the beginning D encodes a value x, which defines a target encoding c. Next, D
attempts to extract the i-th relevant bit of c via a tampering query fi ∈ F that keeps the bit in position i
and replaces all other values with the bits of c′i or c′′i (recall that the two codewords only differ at position
i). Since c′i and c′′i decode to different values, D can determine with a single tampering query (of size at
most n) all relevant values c[i] with certainty; the non-relevant bits can be set to 0, as they play no role in
decoding c. Distinguisher D outputs 1 if and only if the above extraction procedure leads to the chosen
value x. Clearly, D always outputs 1 when interacting with RF . On the other hand, one can show that
D almost never outputs 1 when interacting with SF ,sim, which concludes the proof.

The impossibility proof extends to the case where the decoding is probabilistic, with correctness
error ν > 0. That means, in particular, that for a fixed codeword c, the value Dec(c) is a random
variable. For each position i and a parameter µ ∈ [0, 1], either of the following cases applies: (i) There
exists a pair of codewords (c′i, c

′′
i ), differing only at position i, such that for the statistical distance it

holds that ∆(Dec(c′i),Dec(c′′i ) ≥ µ; (ii) For all codewords c′i and c′′i again differing only at position i,
∆(Dec(c′i),Dec(c′′i ) < µ. In case (i), position i is called relevant; in case (ii) it is called non-relevant. This
distinction can then be exploited as in the deterministic case, but with two adaptations:

1. The extraction has to be repeated roughly Θ(µ−3) times in order to get a good estimation of the i-th
relevant bit. Since the individual decoding attempts use independent randomness, by the Hoeffding
bound we should get a good estimation of that bit after a polynomial number of queries.

2. As before, the decoding is at the end computed by filling the non-relevant positions with sufficiently
many 0s. Since the statistical distance for all strings with each of the bits flipped in the non-relevant
positions varies by at most µ, the triangle inequality allows to (lower) bound the probability of
actually computing the correct value.

In order to formalize the above intuition, we state a general lemma that will be useful in the sequel.
Let (Enc,Dec) be a (k, n)-coding scheme without secret state. Fix a parameter µ ∈ [0, 1]. Define a
position i ∈ [n] to be µ-relevant for the encoding scheme if there exists two codewords c′i, c

′′
i ∈ {0, 1}n

that differ only in position i, for which ∆(Dec(c′i),Dec(c′′i )) ≥ µ. Let R = R(µ) ⊆ [n] be the set of all
relevant positions.

Lemma 28. Let µ ∈ [0, 1] and consider a (k, n)-coding scheme (Enc,Dec) without secret state, and with
correctness error ν ∈ [0, 1]. The following holds:

(i) The set R(µ) is not empty, whenever 0 ≤ µ < 1−2ν
2n .

(ii) Let c′ ← Enc(x′) for some x′ ∈ {0, 1}k. For all c′′ such that c′′[i] = c′[i] for all i ∈ R(µ) we have
that

P[Dec(c′′) = x′] ≥ 1− ν − 2n · µ.

Proof. We start by proving statement (i). For the sake of contradiction, assume that R(µ) is empty. This
means that for all i ∈ [n], and for all possible pairs of codewords c′i, c

′′
i (differing only at coordinate i)

we have that ∆(Dec(c′i),Dec(c′′i )) < µ. By the triangle inequality, this implies that any two codewords
c′, c′′ satisfy ∆(Dec(c′),Dec(c′′)) ≤ n · µ. Fix now two values x′, x′′ ∈ {0, 1}k, such that x′ 6= x′′. Let
c′ ← Enc(x′) and c′′ ← Enc(x′′) be the corresponding encodings. We have:

2n · µ ≥
∑

x∈{0,1}k

∣∣P[Dec(c′′) = x]− P[Dec(c′) = x]
∣∣

≥ P[Dec(c′′) = x′′]− P[Dec(c′) 6= x′],
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where the first inequality follows by definition of statistical distance, and the second inequality follows
by the fact that P[Dec(c′) 6= x′] ≥ P[Dec(c′) = x′′]. Using the correctness property of the code, and our
choice of µ < 1−2ν

2n , we have obtained

P[Dec(c′) 6= x′] ≥ 1− ν − 2n · µ > ν,

a contradiction.
We now show statement (ii). Let c′, c′′ be as in the statement of the lemma. First observe that, since

the code has no secret state, the event that c′′ could decode to something different than x′ depends only
on the randomness of the decoding process. Without loss of generality, assume that c′′ 6= c′ (otherwise
there is nothing to prove). By definition of R(µ) and by using the triangle inequality, we get that
∆(Dec(c′),Dec(c′′)) ≤ |R(µ)| · µ ≤ n · µ. Hence,

2n · µ ≥
∑

x∈{0,1}k

∣∣P[Dec(c′) = x]− P[Dec(c′′) = x]
∣∣

≥ P[Dec(c′) = x′]− P[Dec(c′′) = x′]

≥ 1− ν − P[Dec(c′′) = x′],

which concludes the proof.

We now turn to the proof of Lemma 27.

Proof of Lemma 27. Fix parameters µ ∈ [0, 1] and ρ ∈ N to be determined later. Let R(µ) ⊆ [n], with
|R(µ)| := r ≤ n, the set of all µ-relevant positions, and denote with (c′i, c

′′
i )i∈R(µ) the corresponding pairs of

codewords that are ensured to exist by definition. Additionally, let Xi := {x ∈ {0, 1}k : P[Dec(c′i) = x] >
P[Dec(c′′i ) = x]} be the set of all values x for which the probability that decoding c′i leads to x is larger than
than the probability that decoding c′′i leads to x; also let p′i := P[Dec(c′i) ∈ Xi] and p′′i := P[Dec(c′′i ) ∈ Xi].
We define the “auxiliary information” of the code to be:

aux :=
{
R(µ), (c′i, c

′′
i ,Xi, p′i, p′′i )i∈R(µ)

}
.

Note that information aux is fixed once a particular encoding scheme (Enc,Dec) is given. This is because
the code has no secret state.

Consider the following extraction algorithm Extaux
µ,ρ (with the above auxiliary information hard-coded),

issuing a single parallel tampering query and outputting a value x̄ ∈ {0, 1}k ∪ {⊥}.

1. For all i ∈ R(µ), consider a function fi ∈ F being specified via (fi[1], . . . , fi[n]) where fi[i] = keep
and fi[j] is set to c′i[j] or c′′i [j] for all other positions j ∈ [n] \ {i} (recall that c′i and c′′i differ only
at position i ∈ R(µ)).

2. Extaux
µ,ρ defines the following parallel tampering query (tamper, (fi, . . . , fi)i∈R(µ)), where we take ρ

copies of each function fi. Let (x1,1, . . . , x1,ρ, . . . , xr,1, . . . , xr,ρ) be the answers corresponding to
Extaux

µ,ρ ’s query.

3. For each i ∈ R(µ), Extaux
µ,ρ checks whether

# {xi,j ∈ Xi : j ∈ [ρ]} ≥
(
p′i
2

+
p′′i
2

)
ρ;

if that is the case it sets c̄[i] := c′i[i], and otherwise c̄[i] := 1− c′i[i] = c′′i [i]. All other values c̄[i], with
i 6∈ R(µ), are set to 0.

4. Finally, Extaux
µ,ρ outputs x̄ = Dec(c̄).
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Claim 29. Let 0 < µ < 1−2ν
2n , and ρ ∈ N. For all x ∈ {0, 1}k, let x̄ be the value returned by Extaux

µ,ρ after

tampering with c← Enc(x). Then, P[Extaux
µ,ρ outputs x̄ = x] ≥ 1− (ν + 2n/µ+ 2ne−1/2ρµ2).

Proof. Note that by Lemma 28, the range of values allowed for the parameter µ ensures that the set
R(µ) is not empty. We need to show that Extaux

µ,ρ extracts the bits c[i] of the target encoding of x in all
µ-relevant positions, with high enough probability (the other bits are set to 0 by Extaux

µ,ρ and play almost
no role in decoding c̄).

Let c̃i = fi(c) be the i-th tampered codeword as defined by Extaux
µ,ρ in step 2. For all j ∈ [ρ], and for

all i ∈ R(µ), let X ′i,j (resp. X ′′i,j) be a binary random variable which equals 1 if and only if xi,j happens to
be in the set Xi, where xi,j is the value obtained by decoding c̃i = c′i (resp. c̃i = c′′i ). Note that, for each
i ∈ R(µ), the random variables X ′i,j (resp. X ′′i,j) are independent and follow the Bernoulli distribution with
parameter p′i (resp. p′′i ). Let X ′i =

∑ρ
j=1X

′
i,j and similarly X ′′i =

∑ρ
j=1X

′′
i,j . We bound the probability

that Extaux
µ,ρ extracts the i-th relevant bit of the target encoding incorrectly as follows:

P[Extaux
µ,ρ sets c̄[i] incorrectly] ≤ P[Extaux

µ,ρ sets c̄[i] incorrectly|c̃i = c′i]

+ P[Extaux
µ,ρ sets c̄[i] incorrectly|c̃i = c′′i ]

= P[X ′i ≤ (p′i + p′′i )ρ/2] + P[X ′′i ≥ (p′i + p′′i )ρ/2]

≤ P[X ′i ≤ (p′i − µ/2)ρ] + P[X ′′i ≥ (p′′i + µ/2)ρ]

≤ 2e−1/2ρµ2 ,

where the first inequality comes from the fact that µ ≤ p′i−p′′i , and the second inequality follows from the
Hoeffding inequality.20 By the union bound, we get that the probability of extracting at least one position
incorrectly is bounded by 2ne−1/2ρµ2 , so the probability that Extaux

µ,ρ extracts all µ-relevant positions

correctly is at least 1− 2ne−1/2ρµ2 .
Finally, we observe that the probability that decoding c̄ as defined by Extaux

µ,ρ in step 3 leads to the
correct value x is at least 1− ν − 2n/µ (see Lemma 28). The claim follows.

Define now the following distinguisher D (depending on Extaux
µ,ρ ). The distinguisher chooses x ∈ {0, 1}k

and issues (encode, x) to the oracle it has access to. Then it fixes µ = n−2 and ρ = n5, and it lets Extaux
µ,ρ

interact with that oracle. In case at least one of the values {xi,j}i∈R(µ),j∈[ρ] seen by Extaux
µ,ρ in step 2

happens to be equal to x, D outputs 0. Otherwise, whenever Extaux
µ,ρ returns a value x̄ ∈ {0, 1}k ∪{⊥}, D

outputs 1 if and only if x̄ = x.

Claim 30. P[D(RF ) = 1] ≥ 1− (ν + 2/n+ 2ne−1/2n + n6 · 2−k+1).

Proof. The statement follows by definition of D. Note that D outputs 1 provided that Extaux
µ,ρ returns

the value x chosen uniformly at random by D, except in case it happens that one of the answers xi,j
corresponding to Extaux

µ,ρ ’s tampering query happens to be equal to x. Denote by E the latter event. Since
we already have a lower bound on the probability of success of Extaux

µ,ρ (see Claim 29), it suffices to bound
the probability of the event E.

Note that for each tampering function fi ∈ F specified by Extaux
µ,ρ , we have that the tampered codeword

c̃i = fi(c) overwrites all the bits with known values but the bit in position i, which is copied from the
original codeword c. It follows that the output of such tampering query can decrease the entropy of x by
at most one, and hence the probability that each xi,j happens to be equal to x is at most 2−k+1. By a
union bound, we get that P[E] ≤ rρ · 2−k+1 ≤ nρ · 2−k+1.

20The general form is: Let X1, . . . , Xn be i.i.d. with Xi ∼ Be(p). Then, for X :=
∑

iXi, and for any ε ∈ (0, 1],

P[X ≤ (p− ε)n] ≤ e−2ε2n and P[X ≥ (p+ ε)n] ≤ e−2ε2n.
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The claim now follows by the choice of µ = n−2 and ρ = n5, which in particular ensures that R(µ) is
not empty (see Lemma 28) by our assumption that ν < 1/2− 1/n.

Claim 31. For all simulators sim, we have that P[D(SF ,sim) = 1] ≤ 2−k.

Proof. We first observe that we can assume, without loss of generality, that sim never outputs same. In
fact, if sim happens to return same for any of the queries fi defined by D (via Extaux

µ,ρ ), then the oracle
SF ,sim would replace the output of the simulator with x. By definition in this case D outputs 1 with
probability 0.

On the other hand, assume that sim never outputs same. In such a case the view of Extaux
µ,ρ is

completely independent of x, and so the extractor will output x̄ = x with probability at most 2−k. The
claim follows.

Lemma 27 follows by combining Claim 30 and Claim 31.

C Composing Non-Malleable Codes, PKE, and MACs

This section contains the proof of Theorem 3, which is split into two parts. First, we prove that the
PKE scheme Π′ resulting from combining a single-bit PKE Π and a non-malleable code with secret state
(Gen,Enc,Dec) as shown in Section 4.2 (cf. Figure 4) is replayable NM-SDA secure (NM-RSDA); the
proof is based on the corresponding one in [10] for IND-SDA security. Then, we show that a MAC-based
transformation suggested by [6] to obtain IND-CCA security from IND-RCCA security also works in our
setting, i.e., the transformation applied to Π′ yields a fully NM-SDA secure PKE scheme Π′′. All results
in this section also apply to NM-CPA security. Overall, we prove:

Theorem 3. Let q, p ∈ N and Π be a (t + t1bit, q, p, ε1bit)-NM-SDA-secure 1-bit PKE scheme, (T, V ) a
(t + tmac, 1, qp, εmac)-MAC, and (Gen,Enc,Dec) a (Fset, q, p, εnmc)-non-malleable (k, n)-code with secret
state. Then, Π′′ is (t, q, p, ε)-NM-SDA-secure PKE scheme with

ε = 2(3(nε1bit + εnmc) + qp · 2−` + εmac),

where t1bit and tmac are the overheads incurred by the corresponding reductions and ` is the length of a
verification key for the MAC.

C.1 Replayable NM-SDA Security

The notion of replayable CCA security was introduced by Canetti et al. [6] to deal with the artificial
strictness of CCA security. Intuitively, it potentially allows an attacker to maul a target ciphertext into
one that decrypts to the same message.21 This idea carries over seamlessly to the definition of NM-
SDA security; the corresponding distinguishing game GΠ,nm-rsda

b is obtained by changing GΠ,nm-sda
b (cf.

Figure 2) to answer test whenever a ciphertext e(j) decrypts to m0 or m1 (instead of only when e(j) equals
the challenge ciphertext).

Definition 9. A PKE scheme Π is replayable (t, q, p, ε)-NM-SDA-secure (NM-RSDA) if for all distin-
guishers D with running time at most t and making at most q decryption queries of size at most p each,

∆D(GΠ,nm-rsda
0 , GΠ,nm-rsda

1 ) ≤ ε.

21In contrast, full CCA security requires that any ciphertext created by the attacker (other than the target ciphertext)
decrypt to an independent message.
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C.2 Non-Malleable Codes and PKE

In this section we show that the PKE scheme Π′ is NM-RSDA if the underlying single-bit scheme Π is
NM-SDA secure. Concretely, we prove:

Theorem 32. Let q, p ∈ N and Π be a (trsda + t1bit, q, p, ε1bit)-NM-SDA-secure 1-bit PKE scheme and let
(Gen,Enc,Dec) be (Fset, q, p, εnmc)-non-malleable. Then, Π′ is (trsda, q, p, εrsda)-NM-RSDA-secure PKE
scheme with

εrsda = 2(nε1bit + εnmc),

where t1bit represents the overhead incurred by the reductions.

The proof follows directly from the following lemma:

Lemma 33. For b ∈ {0, 1} and i ∈ [n], there exist reductions Rb,i(·) and Wb(·) such that for all distin-
guishers D,

∆D(GΠ′,nm-rsda
0 , GΠ′,nm-rsda

1 ) ≤
∑
b,i

∆D(Rb,i(·))(GΠ,nm-sda
0 , GΠ,nm-sda

1 ) +
∑
b

∆D(Wb(·))(RF , SF ,sim),

where sim is the simulator for the non-malleable code. Moreover, all reductions preserve the number q
and the size p of the queries.

Proof. Let t1bit be the maximal occurring overhead caused by the reductions Rb,i(·). Fix a distinguisher D
having running time trsda and making at most q decryption queries of size at most p. Due to the preserva-
tion property of the reductions, ∆D(Rb,i(·))(GΠ,nm-sda

0 , GΠ,nm-sda
1 ) ≤ ε1bit and ∆D(Wb(·))(RF , SF ,sim) ≤ εnmc,

which completes the proof.

Towards a proof of Lemma 33, consider the following hybrids for b ∈ {0, 1} and i ∈ [n]: Hb,i proceeds

as GΠ′,nm-rsda
b except that the challenge query (chall,m0,m1) and decryption queries (dec, e(1), . . . , e(p))

are handled differently:

• Challenge query: The first i bits of the encoding c = (c[1], . . . , c[n]) of mb are replaced by
uniformly random and independent bits. The resulting n-bit string is then encrypted bit-wise (as
done by E′). This results in the challenge ciphertext e∗ = (e∗1, . . . , e

∗
n).

• Decryption query: Every component e(l) = (e′1, . . . , e
′
n) is answered as follows: Hybrid Hb,i

computes c′ = (c′[1], . . . , c′[n]), where

c′[i] =

{
c[j] if e′j = e∗j , and

Dskj (e
′
j) otherwise.

Then, Hb,i outputs Dec(c′, s) as the answer to the component of the decryption query.22

Let Hb,0 := GΠ′,nm-rsda
b .

Lemma 34. For all b ∈ {0, 1} and i ∈ [n], there exist a reduction Rb,i(·) such that for all D

∆D(Hb,i−1, Hb,i) = ∆D(Rb,i(·))(GΠ,nm-sda
0 , GΠ,nm-sda

1 ).

Proof. Fix b and i. Hybrid Rb,i(·) works as follows: Initially, it generates the secret state s ← Gen and

n − 1 key pairs (pkj , skj) for j ∈ [n] \ {i}, obtains pki (but not ski) from the oracle (from GΠ,nm-sda
0 or

22Assume here and below that Dec(c′) = ⊥ if any of the bits c′[j] equal ⊥.
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GΠ,nm-sda
0 ), and outputs pk := (pk1, . . . , pkn). When it receives (chall,m0,m1), it computes an encoding

c = (c[1], . . . , c[n])← Enc(mb). Then, it chooses i random bits c̃[1], . . . , c̃[i] and computes

e∗j =

{
Epkj (c̃[j]) for j < i, and

Epkj (c[j]) for j > i.

Moreover, it outputs (chall, c[i], c̃[i]) to its oracle and obtains a ciphertext e∗i . It finally returns e∗ =
(e∗1, . . . , e

∗
n).

When Rb,i(·) receives a (parallel) decryption query, for each component e′ = (e′1, . . . , e
′
n) it proceeds

as follows: For j 6= i, it computes c′[j] as Hb,i does. Moreover, if e′i = e∗i , it sets c′[i] ← c[i]. Otherwise,
it outputs (dec, e′i) to its oracle and obtains the answer c′[i].23 Then, it computes m′ ← Dec(c′). The
answer to the component of the decryption query is m′, unless m′ ∈ {m0,m1}, in which case the it is test.
If one of the component answers is ⊥, Rb,i(·) implements the self-destruct mode, i.e., answers all future
queries by ⊥.

Consider Rb,i(G
Π,nm-sda
0 ) and Hb,i−1. Both generate the public key in the same fashion. As to the

challenge ciphertext, the first i−1 ciphertext components ej generated by Rb,i(G
Π,nm-sda
0 ) are encryptions

of random bits c̃[j], whereas the ith and the remaining components are encryptions of the corresponding

bits of an encoding of mb (generated by GΠ,nm-sda
0 and Rb,i(·), respectively). The same is true for Hb,i−1.

The answer to a decryption query component sent to Rb,i(G
Π,nm-sda
0 ) is Dec(c′) for c′ = (c′[1], . . . , c′[n]),

where c′[j] = Dskj (e
′
j) unless j < i and e′j = ej , in which case c′[j] = c̃[j]. Again, the same holds for

Hb,i−1. Moreover, both Rb,i(G
Π,nm-sda
0 ) and Hb,i−1 answer test if Dec(c′) ∈ {m0,m1}. Thus, they behave

identically.
Rb,i(G

Π,nm-sda
1 ) and Hb,i are compared similarly. This concludes the proof.

Lemma 35. For b ∈ {0, 1}, there exists a wrapper Wb(·) such that

1. Wb(RF ) behaves as Hb,n, and
2. W0(SF ,sim) and W1(SF ,sim) behave identically.

Proof. Wrapper Wb(·) works as follows: Initially, it generates n key pairs (pki, ski) for i ∈ [n] and outputs
pk := (pk1, . . . , pkn). When it receives (chall,m0,m1), it picks n random values c̃[1], . . . , c̃[n], computes
e∗i ←$ Epk(c̃[i]) for i = 1, . . . , n, and returns e = (e1, . . . , en). Additionally, it outputs (encode,mb) to its
oracle.

When it gets a (parallel) decryption query, for every component e′ = (e′1, . . . , e
′
n), it proceeds as

follows: First, it creates a tamper query f = (f [1], . . . , f [n]) where

f [i] =


zero if e′i 6= e∗i and Dski(e

′
i) = 0,

one if e′i 6= e∗i and Dski(e
′
i) = 1, and

keep if e′i = e∗i .

Then, it outputs (tamper, f) to its oracle and obtains an answer x′. If x′ ∈ {m0,m1}, the answer to the
component query test.24 Otherwise, it is x′. If one of the component answers is ⊥, Wb(·) implements the
self-destruct mode, i.e., answers all future queries by ⊥.

Consider Wb(RF ) and Hb,n. Both generate the public key in the same fashion. Furthermore, in either
case, the challenge ciphertext consists of n encryptions of random bits. Finally, both answer a decryption
query by applying the same tamper function to an encoding of mb before decoding it. When the decoding
of the tampered codeword results in m0 or m1, both answer test. Therefore, they behave identically.

23In fact, it is important that Rb,i(·) output a single parallel decryption query containing all e′i for the individual compo-
nents; but it is less cumbersome to describe how individual components are handled.

24Again, Wb(·) needs to output a single parallel tamper query containing the tamper functions f for the individual
components.
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Due to the fact that test is output when a decryption query results in m0 or m1, the observable
behavior is the same in W0(SF ,sim) and W1(SF ,sim).25

Proof (of Lemma 33). Lemma 33 follows using a triangle inequality. Specifically, for any distinguisher D,

∆D(GΠ′,nm-rsda
0 , GΠ′,nm-rsda

1 ) ≤
∑
i

∆D(H0,i−1, H0,i) + ∆D(W0(RF ),W0(SF ,sim))

+ ∆D(W1(SF ,sim),W1(RF )) +
∑
i

∆D(H1,i−1, H1,i)

≤
∑
b,i

∆D(Rb,i(G
Π,nm-sda
0 ), Rb,i(G

Π,nm-sda
1 ))

+
∑
b

∆D(Wb(·))(RF , SF ,sim).

C.3 From Replayable to Full NM-SDA Security

Message authentication codes. A message authentication code (MAC) is a pair of algorithms (T, V ),
where the tagging algorithm T takes as input a message m and a key K and outputs a tag t← TK(m) and
where the verification algorithm V takes a key K, a message m, and a tag t and outputs a bit VK(m, t).

MAC security is defined using the following game Gmac played by an adversary A: Initially, the game
chooses a random key K. Then, A gets access to a tagging oracle, which returns a tag t← TK(m) when
given a message m, and to a verification oracle, which outputs VK(m, t) when given a message m and a
tag K. The adversary wins the game if he submits to the verification oracle a pair (m, t) that is not a
query-answer pair for the tagging oracle and for which VK(m, t) = 1.

Definition 10. A MAC Σ is (t, u, v, ε)-secure if for all adversaries A with running time at most t, making
at most u tag queries and at most v verification queries, ΓA(Gmac) ≤ ε.

An NM-RSDA-secure PKE scheme Π′ = (KG ′, E′, D′) and a message-authentication code (MAC)
(V, T ) can be combined as follows to obtain a fully NM-SDA-secure scheme Π′′ [6]: The key generation
remains unchanged. To encrypt a message m, the new encryption algorithm first chooses a key K for the
MAC and computes an encryption e1 ← E′pk(m ‖K) and e2 ← TK(e1); the ciphertext is (e1, e2). The
new decryption algorithm decrypts e1 to (m,K) and verifies the tag e2. If the tag is valid, the decryption
algorithm outputs m; otherwise, it outputs ⊥.

Theorem 36. Let Π′ be a (t+trsda, q, p, εrsda)-NM-RSDA secure PKE scheme and (V, T ) a (t+tmac, εmac)-
secure MAC. Then, Π′′ is a (t, q, p, ε)-NM-SDA-secure PKE scheme for

ε ≤ 2(εrsda + qp · 2−` + εmac) + εrsda,

where ` is the length of the MAC key.

The theorem follows from the following lemma:

Lemma 37. For b ∈ {0, 1} there exist reductions Rb(·), R′(·), and R′′b (·), such that for all distinguishers
D,

∆D(GΠ′′,nm-sda
0 , GΠ′′,nm-sda

1 ) ≤
∑
b

(
∆D(Rb(·))(GΠ′,nm-rsda

b , GΠ′,nm-rsda
1 ) + qp · 2−` + ΓD(R′′b (·))(Gmac)

)
+ ∆D(R′(·))(GΠ′,nm-rsda

0 , GΠ′,nm-rsda
1 ).

25This is where the proof reflects that Π′ is only NM-RSDA secure.
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where ` is the length of the MAC key. Moreover, reductions Rb(·) and R′(·) preserve the number q and
the size p of the queries, and reduction R′′b (·) asks a single tag query and qp verification queries.

Proof. Let trsda be the maximal occurring overhead caused by the reductions Rb(·), R′(·) and tmac that by
the reductions R′′b (·). Fix a distinguisher D having running time trsda and making at most q decryption
queries of size at most p. Due to the preservation properties of the above reductions, the distinguishing

advantages on GΠ′,nm-rsda
b are at most εrsda and ΓD(R′′b (·))(Gmac) is at most εmac.

Hybrid 1. The first hybrid Hb captures the fact that the MAC key in the challenge ciphertext is

computationally hidden; it differs from GΠ′′,nm-sda
b as follows:

• It generates the challenge ciphertext using two independent MAC keys K∗ and K, i.e., (e∗1, e
∗
2) ←

(E′pk(mb ‖K∗), TK(e∗1)).
• When answering (components of parallel) decryption queries (e′1, e

′
2) ← (E′pk(mb ‖K ′), e′2), if K ′ =

K∗, the tag is verified using K instead of K∗.

Lemma 38. There exists a reduction Rb(·) such that for all distinguishers D asking at most q parallel
queries of size at most p each,

∆D(GΠ′′,nm-sda
b , Hb) ≤ ∆D(Rb(·))(GΠ′,nm-rsda

0 , GΠ′,nm-rsda
1 ) + qp · 2−`,

where ` is the length of the MAC key.

Proof (sketch). Initially, reduction Rb(·) outputs (to D) the public key obtained from its oracle. When
it gets (chall,m0,m1), it outputs ((chall,mb ‖K,mb ‖K∗)) to its oracle and gets a response e∗1. Then,
it computes e∗2 ← TK(e∗1) and outputs (e∗1, e

∗
2). As long as no self-destruct has occurred, Rb(·) answers

(components of parallel) decryption queries (e′1, e
′
2) (different from the challenge ciphertext) as follows: It

outputs (dec, e′1) to its oracle. If the answer is test, Hb verifies the tag e′2 with K and returns mb to D if
it is valid. If the answer is m′ ‖K ′, Hb verifies the tag with K ′ and returns m′ if it is valid.

By inspection one observes that Rb(G
Π′,nm-rsda
0 ) behaves as GΠ′′,nm-sda

b unless D asks a query (e′1, e
′
2)

where e′1 is an encryption of a message concatenated with K∗; however, since the view of D when

interacting with Rb(G
Π′,nm-rsda
0 ) is independent of K∗, the probability of this event is bounded by 2−`.

On the other hand, observe that Rb(G
Π′,nm-rsda
1 ) behaves exactly as hybrid Hb.

Hybrid 2. The second hybrid H ′b behaves as Hb except that queries (e′1, e
′
2) where e′1 contains K∗ are

always rejected.

Lemma 39. There exists a reduction R′′b (·) such that for all distinguishers D,

∆D(Hb, H
′
b) ≤ ΓD(R′′b (·))(Gmac).

Proof. R′′b (·) is a standard reduction to the strong unforgeability of the MAC.

Reduction to NM-RSDA. Distinguishing GΠ′,nm-rsda
0 and GΠ′,nm-rsda

1 can now be reduced to distin-
guishing H ′0 and H ′1.

Lemma 40. There exists a reduction R′(·) such that for all distinguishers D,

∆D(H ′0, H
′
1) = ∆DR′(·)(GΠ′,nm-rsda

0 , GΠ′,nm-rsda
1 ).

Proof (sketch). The reduction translates between the NM-SDA game for Π′′ and the NM-RSDA game for
Π′, using the fact that decryption queries for which the first component contains K∗ can be rejected. In
particular, when the NM-RSDA game outputs test, a ciphertext can be rejected.
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D Miscellaneous

D.1 Chernoff Bound

We make use of the following Chernoff bound.

Theorem 41. Let X1, . . . , Xn be i.i.d. with Xi ∼ Be(pi). Then, for X :=
∑

iXi and µ :=
∑

i pi,

P[X ≤ (1− ε)µ] ≤ e−µε
2/2

for any ε ∈ (0, 1].

D.2 Plotkin Bound

The following theorem allows to bound the number of codewords of a code over a binary alphabet with
relative minimum distance δ > 1/2.

Theorem 42. For a code over a binary alphabet with block length n and distance d ≥ n
2 +1, the maximum

number of codewords is

A(n, d) ≤ d

d− n
2

≤ 1 +
1

2ε

where ε = d
n −

1
2 .

A proof can be found in [26, p. 41].
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