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Density Effect in Cu K-Shell Ionization by 5.1-GeV Electrons 

W. E. Meyerhof, D. G. Jensen, D. M. Kawall, S. E. Kuhn, D. W. Spooner, Z.-E. Meziani, and D. N. Faust 
Department of Physics, Stanford UniPersity, Stanford, California 94305 

(Received 16 January 1992) 

We have made an absolute measurement of the Cu K-shell impact ionization cross section by 5.1-GeV 
electrons, which demonstrates directly a density effect predicted by Fermi in 1940. By determining the 
ratio of the K x-ray yield from a thin front and back layer of the target by a novel grazing emission 
method, we have verified the effect of transition radiation on the x-ray production, suggested by Soren­
sen and reported by Bak et al. 

PACS numbers: 34.80.Dp 

For many years, measurements of the impact ioniza­
tion cross section by relativistic electrons [J 1 failed to find 
a reduction of the cross section predicted by Fermi in 
1940 (21. Fermi noted that the maximum impact param­
eter in an ionizing collision of a target electron by a 
relativistic charged particle is approximately given by 
bmax=t•y/v, where t•=c is the velocity of the particle, 
y=(I -l' 2/c 2)- 112 is its Lorentz factor, and vis the ap­
propriate frequency of the electron (3). In the present 
case, v=VKlh, where VK is the K-shell binding energy. 
For large values of y, bmax can extend over many layers 
of target atoms whose dynamic polarization reduces the 
time-varying electric field at the site of the active elec­
tron and, hence, the ionization probability. For Cu, at 
y= 104, bmax= 1.4 µm. Bak et al. [4] were the first to 
note that in highly relativistic collisions the onset of this 
"density effect" is gradual as the ionizing particle pen­
etrates the (solid) medium from the vacuum. Hence, for 
sufficiently thin targets no density effect is observed. 

In more detail (5,6), the Fourier components of the 
electric field of the particle (and the associated virtual 
photons which ionize the medium) adjust from the vacu­
um value to the screened value within a formation zone 
whose (frequency-dependent) thickness is ~ I µm in the 
present experiment. As a result of the field adjustment, 
"transition radiation" (TR) photons are formed. These 
travel essentially along the beam direction and subse­
quently are absorbed photoelectrically in the medium 
with an absorption length ')..0 = 3.8 µm (3.4 mg/cm 2) near 
the K edge. Ot is noted in Ref. (5) that the absorption 
takes place already in the formation zone.) For targets 
much thinner than Aa, no density effect occurs. For tar­
gets much thicker than ')..0 , the full density effect develops 
at the back of the target. In between these extreme cases, 
a partial density effect should be found. 

Using Al and Cu targets thicker than ')..0 , Bak et al. (4) 
could demonstrate a partial reduction of the K-shell ion­
ization cross section. Furthermore, by adding, in front of 
the target, foils thin enough to avoid significant brems­
strahlung production, an enhancement of the cross sec­
tion by the additional transition radiation was demon­
strated [I]. On the other hand, a direct measurement of 
the difference between the x-ray intensity emitted by the 
front and the back of a thick target was only in fair 

agreement with theory, perhaps because of background 
effects or the statistical uncertainty of the results (1). 

It occurred to us that a direct measurement of the K 
x-ray production near the front and back could be made 
even for foils as thin as a few µm, if one detects only 
those x rays which are emitted at grazing angles with 
respect to the target surfaces. The method is illustrated 
in Fig. I (a). Defining the angle between the incident 
beam and the normal to the target foil as the "tilt angle" 
a, the K x rays produced at a distance z within the target 
along the beam direction can reach detector F (positioned 
at 90° to the beam, 11 m from the target) only after ab­
sorption by a factor a1""'exp(-µKzcota), where µK is 
the linear absorption coefficient for target K x rays. 
Hence, the detected x rays are produced in a surface lay­
er of approximate thickness µi<' tana, which for Cu lies 
between ~0.4 and ~2 µm (0.36-1.8 mg/cm 2) for a 
between IO and 5°. Similarly, the x rays which reach 
detector B experience an absorption ab =exp[ - µK(t 
- z)cotal, where t is the target thickness along the beam 
direction, and originate at the back of the target mainly 
also in a layer of thickness µi< 1 tana. 

From the expressions of Ref. (6) we have calculated 
the z dependence of the local K-vacancy production cross 
section <TK in Cu for 5. 1-GeV electrons [71. The absolute 
counts in the detectors F and B, which we denote by F 
and B, and the ratio FIB are then computed for any tar­
get thickness and tilt angle from the relations 

F-G J:'aKafdz, B-G J:' <TKObdz. (!) 

Here, G is a geometrical factor which consists of a prod­
uct of the number of incident electrons, the number of 
target atoms per cm 3, the fluorescence yield, the solid an­
gle of each detector divided by 4tr, and the detection 
efficiency. The theoretical K x-ray intensities have to be 
corrected for beam-induced K-x-ray-producing back­
grounds of which the major ones are bremsstrahlung (8) 
and knock-on electrons (91. 

Before discussing the experimental arrangement and 
results, we present calculations for B and for FIB. The 
curves in Fig. 2 give the corrected back-face counts for 
the thickest target used by us (61 mg/cm 2 Cu, which 
should be enough to develop the full density effect); the 
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FIG. I. (a) Principle of grazing emission method (not to 
scale). X rays produced at a distance z from the front face of 
the target foil must penetrate through a distance z cota before 
reaching the detector F, 11 m from the target. The x rays must 
penetrate a distance (t - z)cota to reach the detector B. (b) 
Typical Cu K (a and /J) x-ray spectra from the detectors, gated 
with the beam pulse. At the higher channels, a double pileup 
peak can be seen. 

corrections add less than l0% to the theoretically expect­
ed yields. The curves are derived from Eq. (I), assuming 
a fluorescence yield of 0.44 [IO]. a detection solid angle 
of 5.74xI0- 7 sr, an absorption correction for Be win­
dows and air space (see below) of 0. 971, and normalizing 
to I 09 e. The curves are shown for positive and negative 
values of a, corresponding to target orientations in which 
the back face of the target is seen by the detectors B or F, 
respectively. The solid curves in Fig. 3 give the theoreti­
cal FIB ratios for various Cu target thicknesses. The 
dashed curves have been corrected for the expected back­
grounds. Here, the corrections for the thickest targets 
are substantial, because bremsstrahlung and knock-on 
electrons induce more K x rays towards the back of the 
target, whereas transition radiation induces more K 
x rays near the front. 

The experimental arrangement was relatively simple. 
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FIG. 2. K x-ray counts per I 09 e from the back face of a 6 I -
mg/cm 2 Cu target as a function of tilt angle a. The curves are 
computed from Eq. (I), using the calculations of Ref. (6) and 
include background corrections. 

Target foil strips, 9.3 mm wide and 46 mm long, were 
mounted on a ladder whose vertical stays were bent out of 
the way so that the detectors F and B had an unobstruct­
ed view of each target strip. A 5.1-GeV electron beam 
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FIG. 3. Front- to back-face K x-ray counting ratios as a 
function of tilt angle for Cu foils of the following thicknesses: 
(a) 2. 7, (b) I 0.8, (c) 21, (d) 38, and (e) 61 mg/cm 2• The solid 
curves are computed from Eq. (I), using the calculations of 
Ref. (61. The dashed curves are corrected for background­
induced x rays, as described in the text. 
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from the Stanford Linear Accelerator Center was focused 
to a 3-mm-diam spot at the center of the target. The 
beam consisted of 0.5-µs-wide pulses at a repetition rate 
of 120 pulses/s. Typical beam intensities were 0. 7 x 109 e 
per pulse at the larger tilt angles and up to 5 x 109 e per 
pulse for the smallest tilt angle. X rays were detected by 
two identical 200-mm 2 Si(Li) ORTEC x-ray detectors 
(11], collimated by 0.8-mm-thick lead collimators to an 
acceptance area of 70 mm 2 and placed at l I m from 
the target. The detectors had 50-µm-thick Be windows. 
Each detector was shielded by a 0.9-m-thick concrete 
house. An evacuated beam pipe stretched from the target 
to within 1.5 cm of each detector window. Each pipe was 
sealed by a 25-µm-thick Be window. 

The x-ray spectra were recorded in event mode, gated 
by 2-µs-long gates so that each beam pulse would fall 
within the center of the gate. Typically, the spectra had 
a few-percent background [Fig. 1 (b)]. Despite the small 
solid angle subtended by the detectors, double pileup 
pulse-height peaks could be seen. The double pileup 
peaks were used to correct the single count peaks, assum­
ing a Poisson distribution in the number of counts per 
beam pulse. Typically, between 0.05 and 0.15 count per 
pulse were detected. By moving the electron beam off the 
target strip with a weak-field magnet, we could show that 
external backgrounds, such as synchrotron radiation, 
were negligible. 

The data points in Fig. 2 give the measured back-face 
counts for the 61-mg/cm 2 Cu target, corrected for pileup, 
and normalized to 109 e. The statistical error on each 
data point is approximately l % or less. The greatest un­
certainty is produced by the setting of the tilt angle, 
which had to be done manually in this experiment. We 
assign an uncertainty of ± 0.2° to this setting. The zero 
position of the tilt angle could be determined only by 
fitting the entire set of points with the computed curves 
for positive and negative tilt angles. Data from tilt angles 
below I O could not be trusted since surface unevenness of 
the electrolytically deposited foils (12] caused variations 
in a of the order of 0.5°. 

The back-face counts for the 61-mg/cm 2 target, after 
background subtraction, are essentially due only to the 
electron impact ionization and not TR. Hence, one can 
use the data points for this target, as well as those for 38-
and 21-mg/cm 2-thick targets (with small corrections), to 
compute the impact ionization cross section absolutely. 
We find a mean value of 378 ± 43 b. This can be com­
pared to calculations, which include the density effect, by 
Scofield [l 3], Sorensen (61, and Chechin and Ermilova 
[7] of approximately 390 b. Without the density effect, 
the corresponding calculated cross sections lie between 
540 and 580 b. Hence, our measurements provide, for 
the first time, an absolute confirmation of the density 
effect in inner-shell impact ionization by relativistic elec­
trons. 

Figure 3 gives the measured FIB ratios as a function 

of tilt angle. Whenever positive and negative tilt angles 
were within ± 0.2°, we have averaged the FIB values. 
As the target thickness is reduced, FIB tends towards 
unity at the larger tilt angles. As noted at the beginning 
of this paper, for these targets one should measure essen­
tially the "vacuum" cross section throughout the target 
[ 1 ,5,61. As the target thickness increases, the theoretical 
FIB tends towards the expected ratio of ~ 560/390 
= 1.44 at the smaller tilt angles where the thin-layer 
front and back K x-ray yields are separately detected. 
On the whole, the measurements are in very good agree­
ment with the background-corrected theoretical values. 
At the smallest tilt angles, the data points fall below the 
expected values. This could be due to the target surface 
unevenness and/or a slightly incorrect z dependence of 
the calculated backgrounds for the theoretical cross 
sections). Efforts are presently under way to use an 
electron-photon transport code, EGS (electron-gamma 
shower) (14], to make more accurate background calcu­
lations. It is clear from the data, though, that transition 
radiation has an important effect on inner-shell K­
vacancy production near the front face of the target, as 
suggested by Bak et al. [l ,4] and supported by theory 
(6,7]. 

We are very grateful to A. H. Sorensen for suggesting 
a reinvestigation of the density effect in impact ionization 
by relativistic electrons. Useful and encouraging discus­
sions with H. Genz are gratefully acknowledged. The 
competent programming of the expressions of Ref. [6] by 
Andrew Lee is very much appreciated. Our deep thanks 
go to the staff of SLAC for providing excellent technical 
assistance and to the administration of SLAC for grant­
ing a 24-h beam period, which made this experiment pos­
sible. This work was supported in part by National Sci­
ence Foundation Grant No. PHY-9019293 (Stanford 
University) and by the Director, Office of Energy Re­
search, Office of High Energy and Nuclear Physics, 
Division of High Energy Physics of the Department of 
Energy, under Contracts No. DE-AC03-76SF00515 
(SLAC) and No. DE-FG03-88ER40439 (Stanford Uni­
versity). 
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