288,311 research outputs found

    The Market Fraction Hypothesis under different GP algorithms

    Get PDF
    In a previous work, inspired by observations made in many agent-based financial models, we formulated and presented the Market Fraction Hypothesis, which basically predicts a short duration for any dominant type of agents, but then a uniform distribution over all types in the long run. We then proposed a two-step approach, a rule-inference step and a rule-clustering step, to testing this hypothesis. We employed genetic programming as the rule inference engine, and applied self-organizing maps to cluster the inferred rules. We then ran tests for 10 international markets and provided a general examination of the plausibility of the hypothesis. However, because of the fact that the tests took place under a GP system, it could be argued that these results are dependent on the nature of the GP algorithm. This chapter thus serves as an extension to our previous work. We test the Market Fraction Hypothesis under two new different GP algorithms, in order to prove that the previous results are rigorous and are not sensitive to the choice of GP. We thus test again the hypothesis under the same 10 empirical datasets that were used in our previous experiments. Our work shows that certain parts of the hypothesis are indeed sensitive on the algorithm. Nevertheless, this sensitivity does not apply to all aspects of our tests. This therefore allows us to conclude that our previously derived results are rigorous and can thus be generalized

    Characterization of the 4-canonical birationality of algebraic threefolds

    Full text link
    In this article we present a 3-dimensional analogue of a well-known theorem of E. Bombieri (in 1973) which characterizes the bi-canonical birationality of surfaces of general type. Let XX be a projective minimal 3-fold of general type with Q\mathbb{Q}-factorial terminal singularities and the geometric genus pg(X)5p_g(X)\ge 5. We show that the 4-canonical map ϕ4\phi_4 is {\it not} birational onto its image if and only if XX is birationally fibred by a family C\mathscr{C} of irreducible curves of geometric genus 2 with KXC0=1K_X\cdot C_0=1 where C0C_0 is a general irreducible member in C\mathscr{C}.Comment: 25 pages, to appear in Mathematische Zeitschrif

    Painlev\'e V and time dependent Jacobi polynomials

    Full text link
    In this paper we study the simplest deformation on a sequence of orthogonal polynomials, namely, replacing the original (or reference) weight w0(x)w_0(x) defined on an interval by w0(x)etx.w_0(x)e^{-tx}. It is a well-known fact that under such a deformation the recurrence coefficients denoted as αn\alpha_n and βn\beta_n evolve in tt according to the Toda equations, giving rise to the time dependent orthogonal polynomials, using Sogo's terminology. The resulting "time-dependent" Jacobi polynomials satisfy a linear second order ode. We will show that the coefficients of this ode are intimately related to a particular Painlev\'e V. In addition, we show that the coefficient of zn1z^{n-1} of the monic orthogonal polynomials associated with the "time-dependent" Jacobi weight, satisfies, up to a translation in t,t, the Jimbo-Miwa σ\sigma-form of the same PV;P_{V}; while a recurrence coefficient αn(t),\alpha_n(t), is up to a translation in tt and a linear fractional transformation PV(α2/2,β2/2,2n+1+α+β,1/2).P_{V}(\alpha^2/2,-\beta^2/2, 2n+1+\alpha+\beta,-1/2). These results are found from combining a pair of non-linear difference equations and a pair of Toda equations. This will in turn allow us to show that a certain Fredholm determinant related to a class of Toeplitz plus Hankel operators has a connection to a Painlev\'e equation

    Non-universal size dependence of the free energy of confined systems near criticality

    Full text link
    The singular part of the finite-size free energy density fsf_s of the O(n) symmetric ϕ4\phi^4 field theory in the large-n limit is calculated at finite cutoff for confined geometries of linear size L with periodic boundary conditions in 2 < d < 4 dimensions. We find that a sharp cutoff Λ\Lambda causes a non-universal leading size dependence fsΛd2L2f_s \sim \Lambda^{d-2} L^{-2} near TcT_c which dominates the universal scaling term Ld\sim L^{-d}. This implies a non-universal critical Casimir effect at TcT_c and a leading non-scaling term L2\sim L^{-2} of the finite-size specific heat above TcT_c.Comment: RevTex, 4 page

    PPM1D phosphatase, a target of p53 and RBM38 RNA-binding protein, inhibits p53 mRNA translation via dephosphorylation of RBM38.

    Get PDF
    PPM1D phosphatase, also called wild-type p53-induced phosphatase 1, promotes tumor development by inactivating the p53 tumor suppressor pathway. RBM38 RNA-binding protein, also called RNPC1 and a target of p53, inhibits p53 messenger RNA (mRNA) translation, which can be reversed by GSK3 protein kinase via phosphorylation of RBM38 at serine 195. Here we showed that ectopic expression of RBM38 increases, whereas knockdown of RBM38 inhibits, PPM1D mRNA translation. Consistent with this, we found that RBM38 directly binds to PPM1D 3'-untranslated region (3'-UTR) and promotes expression of a heterologous reporter gene that carries PPM1D 3'-UTR in a dose-dependent manner. Interestingly, we showed that PPM1D directly interacts with and dephosphorylates RBM38 at serine 195. Furthermore, we showed that PPM1D modulates p53 mRNA translation and p53-dependent growth suppression through dephosphorylation of RBM38. These findings provide evidence that the crosstalk between PPM1D and RBM38, both of which are targets and modulators of p53, has a critical role in p53 expression and activity

    Spontaneous Scale Symmetry Breaking in 2+1-Dimensional QED at Both Zero and Finite Temperature

    Get PDF
    A complete analysis of dynamical scale symmetry breaking in 2+1-dimensional QED at both zero and finite temperature is presented by looking at solutions to the Schwinger-Dyson equation. In different kinetic energy regimes we use various numerical and analytic techniques (including an expansion in large flavour number). It is confirmed that, contrary to the case of 3+1 dimensions, there is no dynamical scale symmetry breaking at zero temperature, despite the fact that chiral symmetry breaking can occur dynamically. At finite temperature, such breaking of scale symmetry may take place.Comment: 12 pages, no figures, uses RevTeX4-bet

    Non-adiabatic Fast Control of Mixed States based on Lewis-Riesenfeld Invariant

    Full text link
    We apply the inversely-engineered control method based on Lewis-Riesenfeld invariants to control mixed states of a two-level quantum system. We show that the inversely-engineered control passages of mixed states - and pure states as special cases - can be made significantly faster than the conventional adiabatic control passages, which renders the method applicable to quantum computation. We devise a new type of inversely-engineered control passages, to be coined the antedated control passages, which further speed up the control significantly. We also demonstrate that by carefully tuning the control parameters, the inversely-engineered control passages can be optimized in terms of speed and energy cost.Comment: 9 pages, 9 figures, version to appear in J. Phys. Soc. Jp
    corecore