
SOFTWARE ENGINEERING LABORATORY: DATA VALIDATION

Marvin V. Zelkowitz and Eric Chen
Department of Computer Science

University of Maryland
College Park, Maryland 20742

The need to validate the data being collected by the Software Engineering Laboratory is a primary
prerequisite before analyses can be attempted. In terms of validation, three phases have been
identified: (1) forms validation, (2) project validation, and (3) completeness and consistency
validation.

Forms validation is a process that verifies that the data on the forms that are being collected is
accurately transferred to the computerized data base. It is mostly a clerical process as the forms
are typed into the computer. Minimal checking of data across forms is attempted — all checking
is at the local level. In addition, once a project's forms has been entered, the data is rechecked
against the original forms before being used in analysis.

Project validation tests whether the entire set of forms for a project is consistent. For example,
does the number of hours specified on the resource summary (filled out by the project manager
weekly for all project personnel) agree with the number of hours specified by each programmer
on the component status report (giving the hours spent each week on each component)? What
date is missing (e.g., which reports are not in the data base)? This is a relatively straightforward
check on the total collected data from a project.

The more interesting question is completeness and consistency validation. This attempts to de-
termine if there is any underlying structure or biasing in the ways forms are being filled out.

The initial approach is to use cluster analysis. Each of the forms is represented as a multidimen-
sional "vector of M dimensions. Each vector is projected onto a N-dimensional space using a subset
of the M components as a basis. It is determined which forms cluster near one another in this
N-dimensional space — such forms being considered related according to the basis chosen. Various
regression techniques are being used to see if any of the other (M-N) attributes are predictors of
this clustering.

Some of the issues being initially investigated include: Is the programmer identification a predicto:
of the cluster? (It shouldn't be.) If so, then some of the programmers fill out the forms in cer-
tain characteristic ways which would show a biasing in the collected data. On the projects so far
checked, this does not seem to be the case. Another question: Is the project name a good pre-
dictor when several projects are considered together? If so, then either there is biasing at the
project level, or else different methodologies on different projects lead to different data being
collected. If true, then the reasons will be investigated. A third initial question to be studied is:
Are the clusters indicative of certain characteristic errors? Can clustering be used as an error
classification?

While the work is still very preliminary, the use of such clustering techniques in this environment
seems promising.

M. Zelkowitz
Univ. of Md.
1 of 9

https://ntrs.nasa.gov/search.jsp?R=19820068857 2020-03-21T07:02:20+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42854771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


DATA FLOW THROUGH THE SOFTWARE ENGINEERING LABORATORY

FORMS

T
KEYPUNCH

FORMS
VALIDATION

DISK
FILES

MAGNETIC
TAPE

NASA DATABASE
(POP 11)

PROJECT
VALIDATION

J_

U OF MD DATA
BASE (UNIVAC

1100/42)

DATA BASE
ACCESS

ANALYSIS
PROGRAMS

COMPLETENESS
VALIDATION

COLLECTED DATA
CORRECTION DATA

25
M. Zelkowitz
Univ. of Md.
2 of 9



FORMS COLLECTED

Resource Summary (by management)
hours/week/programmer

Component Status Report (by programmers)
hours/week/component/phase

Change Report Form (by programmer)
Each change or error, when found

Computer Run Analysis (by programmer)
Each computer run

General Project Summary (by management)
Each project

Component Summary (by programmers)
Each -piece of system

M. Zelkowitz
Univ. of Md.

26 3 of 9



DATA VALIDATION

1. Forms Validation — Each form is self-consistent, as it is entered into bases.
Checks are both manual and automated.

2. Project Validation — Similar data on different forms for a project is analyzed, for
missing or incomplete data.

3. Consistency Validation — Checks whether there is any systematic biasing of the set
of collected forms between projects.

then —

Either:

(a) Projects are not using same interpretation of instructions when
filling out forms.

or (b) Methodology used leads to characteristic differences in approaches
to forms.

M. Zelkowitz
Univ. of Md.
4 of 9



CONSISTENCY VALIDATION

Basic approach uses cluster analysis.

Each form a multidimensional vector of N dimensions.

Choose M of those components.

Objects near one another are "related" by M chosen elements are
in same cluster.

Question: Is any one of the (N-M) remaining
components a predictor of cluster?

28

M. Zelkowitz
Univ. of Md.
5 of 9



CLUSTERING ALGORITHM

1. Compute similarity between vectors (forms) I and J. Call it Sij. Sij will have a value between
0 and 1.

2. Choose some threshold B between 0 and 1.

3. If Sij > B then I and J are similar, so set Dij = 1. Otherwise set Dij = 0.

4. When viewed as a graph, Dij = 1 represents that node I is connected by an arc to node J.
Compute transitive closure D* = D + D2 + . . . Dn.

5. D*ij = 1 if and only if nodes I and J are in the same connected subgraph. These connected
subgraphs represent similar forms.

RESEARCH IDEAS

1. Vary B and measure effects on cluster sizes. The larger the B, then the fewer the vectors
that will be similar. For the following graphs, B = 0.950.

2. Vary clustering algorithm. Current algorithm computes dot product of unit (normalized)
vectors. Alternative strategy is to compute clusters as those vectors closest to some
centroid instead of simply within the same connected subgraph.

CURRENT ALGORITHM ALTERNATIVE ALGORITHM

o- CLUSTERS

29

M. Zelkowitz
Univ. of Md.
6 of 9



138 - CLUSTER

208 -

12-

5 -
4 _
3 -
2 -
1 -
0

CLUSTER

PROJECT: B
TOTAL #OF FORMS = 288

I
I I I

1 2 3 4 8

CLUSTER SIZE

I I I I I I I T
12 14

11 -

7
6

4
3

1
0

PROJECT: A
TOTAL # OF FORMS = 238

I T
1 2 3 4 5

CLUSTER SIZE

I I I
8 9

I I I
19

#OF
CLUSTER

PROJECT: C
TOTAL # OF FORMS = 38

I I I I I I I I 1 I I
1 2

CLUSTER SIZE

30

M. Zelkowitz
Univ. of Md.
7 of 9



PROJ.. A

PROJ. 1
!= 183

15 -

uu oc
3 O
O"-

oc 2

< o
?£ u.

OC 5?a. - 5 *
X

I
10

I
15

I
20

CLUSTER SIZE (% OF TOTAL FORMS)

20-,

15-

PROJ. 2
1=66 10-

5-

I
5

I
10

I
15

I
20

EACH X REPRESENTS ONE CLUSTER

A GIVEN PROGRAMMER APPEARING IN A GIVEN CLUSTER IS PROPORTIONAL TO CLUSTER
SIZE - SHOWING EVEN QISTRIBUTION OF FORMS IN EACH CLUSTER

31
M. Zelkowitz
Univ. of Md.
8 of 9



PROG. IN SINGLE
CLUSTER GROUPS

50-

40-

30-

20-

10 —

PROJ. B
1=289

50-

40-

30-

20-

10-

I I I I I
10 20 30 40 50
PROG. IN TOTAL POPULATION

/

I
60

PROJ. A
2=238

x/

0

50-1

I
10

I
20

I
30

I
40

1
50

1
60

40-H

30-

20-

10-

PROJ. C
S= 38

0 10 20 30 40 50 60
EACH X REPRESENTS ONE PROGRAMMER

FORMS THAT DO NOT CLUSTER ARE PROPORTIONAL TO NUMBER OF FORMS
BY A GIVEN PROGRAMMER - SHOWING EVEN DISTRIBUTION

32
M. Zelk
Univ. ot
9 of 9




