105 research outputs found
An RBF Meshless Approach to Evaluate Strain Due to Large Displacements in Flexible Printed Circuit Boards
Thin plates are very often employed in a context of large displacements and rotations, for example, whenever the extreme flexibility of a body can replace the use of complicated kinematic pairs. This is the case of the flexible Printed Circuit Boards (PCBs) used, for example, within last-generation foldable laptops and consumer electronics products. In these applications, the range of motion is generally known in advance, and a simple strategy of stress assessment leaving out nonlinear numerical calculations appears feasible other than desirable. In this paper, Radial Basis Functions (RBFs) are used to represent a generic transformation of a bi-dimensional plate, with all the derivate fields being analytically achieved without the need for a numerical grid for large-displacement applications. Strains due to bending are easily retrieved with this method and satisfactorily compared to analytical and shell-based Finite Element Method (FEM) benchmarks. On the other hand, the computational costs of the juxtaposed methods appear far different; with the machine being equal, the orders of magnitude of the time elapsed in computation are seconds for the RBF-based strategy versus minutes for the FEM approach
Structural validation of a realistic wing structure: the RIBES test article
Several experimental test cases are available in literature to study and validate fluid structure interaction methods. They, however,
focus the attention mainly on replicating typical cruising aerodynamic conditions forcing the adoption of fully steel made models
able to operate with the high loads generated in high speed facilities. This translates in a complete loss of similitude with typical
realistic aeronautical wing structures configurations. To reverse this trend, and to better study the aerolastic mechanism from a structural point of view, an aeroelastic measurement campaign was carried within the EU RIBES project. A half wing model for wind tunnel tests was designed and manufactured replicating a typical metallic wing box structure, producing a database of loads, pressure, stress and deformation measurements. In this paper the design, manufacturing and validation activities performed within the RIBES project are described, with a focus on the structural behavior of the test article. All experimental data and numerical models are made freely available to the scientific community
Mechanical analysis of the ENEA TF coil proposal for the EU DEMO fusion reactor
The design of the superconducting magnet system of the European DEMO fusion reactor is currently being pursued in the framework of the EUROfusion Magnets Work Package (WPMAG). Three alternative winding pack (WP) options for the Toroidal Field Coils (TFCs) are being proposed by different research units, each featuring a different conductor manufacturing technology (react-and-wind vs. wind-and-react) or winding layout (layer vs. pancake).
One of the options (namely, WP#2), proposed by Italian ENEA, features a layer-wound WP design adopting a wind-and-react conductor with rectangular cross section with high aspect ratio, obtained squeezing an initially circular conductor.
In order to assess the capability of all the TFC components to withstand the electromagnetic loads due to the huge Lorentz forces without any structural failure during the magnet lifetime, the mechanical analysis of the 2016 version of the WP#2 design option is performed here applying a hierarchical approach herein defined as the Stress Recovery Tool (SRT): the Finite Element Analysis (FEA) of a whole magnet (including the casing) is performed at a low computational cost adopting a coarse WP model with smeared (homogenized) properties. The displacements computed on the smeared WP are then used as boundary conditions for a refined FEA of some WP slices, located in selected (critical) poloidal positions, where all the conductors detailed features (jacket, insulations) are properly accounted for
High fidelity numerical fracture mechanics assisted by RBF mesh morphing
The study and design of cyclically loaded structures cannot neglect the evaluation of their fatigue behavior. Today numerical prediction tools allow adopting, in various industrial fields, refined and consolidated procedures for the assessment of cracked parts through analyses based on fracture mechanics. An high level of detail can be obtained through the use of well consolidated FEM methods, allowing an accurate and reliable calculation of the flaw Stress Intensity Factor (SIF) and its resulting prediction in terms of crack propagation. A challenging step for this computational workflow remains, however, the generation and update of the computational grid during crack evolution. It is in this context that radial basis functions (RBF) mesh morphing is emerging as a viable solution to replace the complex and time-consuming remeshing operation. The flaw front is updated, according to its propagation, by automatically deforming the numerical grid obtaining an evolutionary workflow suitable to be used for industrially-sized numerical meshes (many millions of nodes). A review of applications, obtained by exploiting FEA (Ansys Mechanical) and mesh morphing (RBF Morph) state of-the-art tools, is presented in this work. At first the proposed workflow is applied on a circular notched bar with a defect controlled by a two-parameters evolution. The same approach is then refined and demonstrated for a Multi Degree of Freedom (MDoF) case on the same geometry and on the vacuum vessel port stub from the fusion nuclear reactor Iter
A digital shadow cloud-based application to enhance quality control in manufacturing
In Industry 4.0 era, rapid changes to the global landscape of manufacturing are transforming industrial plants in increasingly more complex digital systems. One of the most impactful innovations generated in this context is the "Digital Twin", a digital copy of a physical asset, which is used to perform simulations, health predictions and life cycle management through the use of a synchronized data flow in the manufacturing plant. In this paper, an innovative approach is proposed in order to contribute to the current collection of applications of Digital Twin in manufacturing: a Digital Shadow cloud-based application to enhance quality control in the manufacturing process. In particular, the proposal comprises a Digital Shadow updated on high performance computing cloud infrastructure in order to recompute the performance prediction adopting a variation of the computer-aided engineering model shaped like the actual manufactured part. Thus, this methodology could make possible the qualification of even not compliant parts, and so shift the focus from the compliance to tolerance requirements to the compliance to usage requirements. The process is demonstrated adopting two examples: the structural assessment of the geometry of a shaft and the one of a simplified turbine blade. Moreover, the paper presents a discussion about the implications of the use of such a technology in the manufacturing context in terms of real-time implementation in a manufacturing line and lifecycle management. Copyright (C) 2020 The Authors
The impact of land use on non-native species incidence and number in local assemblages worldwide.
While the regional distribution of non-native species is increasingly well documented for some taxa, global analyses of non-native species in local assemblages are still missing. Here, we use a worldwide collection of assemblages from five taxa - ants, birds, mammals, spiders and vascular plants - to assess whether the incidence, frequency and proportions of naturalised non-native species depend on type and intensity of land use. In plants, assemblages of primary vegetation are least invaded. In the other taxa, primary vegetation is among the least invaded land-use types, but one or several other types have equally low levels of occurrence, frequency and proportions of non-native species. High land use intensity is associated with higher non-native incidence and frequency in primary vegetation, while intensity effects are inconsistent for other land-use types. These findings highlight the potential dual role of unused primary vegetation in preserving native biodiversity and in conferring resistance against biological invasions
Advance in the conceptual design of the European DEMO magnet system
The European DEMO, i.e. the demonstration fusion power plant designed in the framework of the Roadmap to Fusion Electricity by the EUROfusion Consortium, is approaching the end of the pre-conceptual design phase, to be accomplished with a Gate Review in 2020, in which all DEMO subsystems will be reviewed by panels of independent experts. The latest 2018 DEMO baseline has major and minor radius of 9.1 m and 2.9 m, plasma current 17.9 MA, toroidal field on the plasma axis 5.2 T, and the peak field in the toroidal-field (TF) conductor 12.0 T. The 900 ton heavy TF coil is prepared in four lowerature-superconductor (LTS) variants, some of them differing slightly, other significantly, from the ITER TF coil design. Two variants of the CS coils are investigated - a purely LTS one resembling the ITER CS, and a hybrid coil, in which the innermost layers made of HTS allow the designers either to increase the magnetic flux, and thus the duration of the fusion pulse, or to reduce the outer radius of the CS coil. An issue presently investigated by mechanical analyzes is the fatigue load. Two variants of the poloidal field coils are being investigated. The magnet and conductor design studies are accompanied by the experimental tests on both LTS and HTS prototype samples, covering a broad range of DC and AC tests. Testing of quench behavior of the 15 kA HTS cables, with size and layout relevant for the fusion magnets and cooled by forced flow helium, is in preparation.</p
The DEMO magnet system â Status and future challenges
We present the pre-concept design of the European DEMO Magnet System, which has successfully passed the DEMO plant-level gate review in 2020. The main design input parameters originate from the so-called DEMO 2018 baseline, which was produced using the PROCESS systems code. It defines a major and minor radius of 9.1 m and 2.9 m, respectively, an on-axis magnetic field of 5.3 T resulting in a peak field on the toroidal field (TF) conductor of 12.0 T.
Four variants, all based on low-temperature superconductors (LTS), have been designed for the 16 TF coils. Two of these concepts were selected to be further pursued during the Concept Design Phase (CDP): the first having many similarities to the ITER TF coil concept and the second being the most innovative one, based on react-and-wind (RW) Nb3Sn technology and winding the coils in layers. Two variants for the five Central Solenoid (CS) modules have been investigated: an LTS-only concept resembling to the ITER CS and a hybrid configuration, in which the innermost layers are made of high-temperature superconductors (HTS), which allows either to increase the magnetic flux or to reduce the outer radius of the CS coil. Issues related to fatigue lifetime which emerged in mechanical analyses will be addressed further in the CDP. Both variants proposed for the six poloidal field coils present a lower level of risk for future development. All magnet and conductor design studies included thermal-hydraulic and mechanical analyses, and were accompanied by experimental tests on both LTS and HTS prototype samples (i.e. DC and AC measurements, stability tests, quench evolution etc.). In addition, magnet structures and auxiliary systems, e.g. cryogenics and feeders, were designed at pre-concept level. Important lessons learnt during this first phase of the project were fed into the planning of the CDP. Key aspects to be addressed concern the demonstration and validation of critical technologies (e.g. industrial manufacturing of RW Nb3Sn and HTS long conductors, insulation of penetrations and joints), as well as the detailed design of the overall Magnet System and mechanical structures
Regional invasion history and land use shape the prevalence of nonânative species in local assemblages
The ecological impact of non-native species arises from their establishment in local assemblages. However, the rates of non-native spread in new regions and their determinants have not been comprehensively studied. Here, we combined global databases documenting the occurrence of non-native species and residence of non-native birds, mammals, and vascular plants at regional and local scales to describe how the likelihood of non-native occurrence and their proportion in local assemblages relate with their residence time and levels of human usage in different ecosystems. Our findings reveal that local non-native occurrence generally increases with residence time. Colonization is most rapid in croplands and urban areas, while it is slower and variable in natural or semi-natural ecosystems. Notably, non-native occurrence continues to rise even 200âyears after introduction, especially for birds and vascular plants, and in other land-use types rather than croplands and urban areas. The impact of residence time on non-native proportions is significant only for mammals. We conclude that the continental exchange of biotas requires considerable time for effects to manifest at the local scale across taxa and land-use types. The unpredictability of future impacts, implied by the slow spread of non-native species, strengthens the call for stronger regulations on the exchange of non-native species to reduce the long-lasting invasion debt looming on ecosystems' future
- âŠ