37 research outputs found

    Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior

    Get PDF
    The extracellular matrix (ECM)-biomimetic fibrillar structure of platelet lysate (PL) gels along with its enriched milieu of biomolecules has drawn significant interest in regenerative medicine applications. However, PL-based gels have poor structural stability which severely limits its performance as a bioinstructive biomaterial. Here, rod-shaped cellulose nanocrystals (CNC) are used as a novel approach to modulate the physical and biochemical microenvironment of PL gels enabling their effective use as injectable human-based cell scaffolds with a level of biomimicry that is difficult to recreate with synthetic biomaterials. The incorporation of CNC (0 to 0.61 wt.%) into the PL fibrillar network during the coagulation cascade leads to decreased fiber branching, increased interfiber porosity (from 66 to 83%) and modulate fiber (from 1.4 ± 0.7 to 27 ± 12 kPa) and bulk hydrogel (from 18 ± 4 to 1256 ± 82 Pa) mechanical properties. As result of these physicochemical alterations, nanocomposite PL hydrogels resist to the typical extensive clot retraction (from 76 ± 1 to 24 ± 3 at Day 7) and show favored retention of PL bioactive molecules. The feedback of these cues on the fate of human adipose-derived stem cells is evaluated, showing how it can be explored to modulate the commitment of encapsulated stem cells toward different genetic phenotypes without the need for additional external biological stimuli. These fibrillar nanocomposite hydrogels allow therefore to explore the outstanding biological properties of human-based PL as an efficient engineered ECM which can be tailored to trigger specific regenerative pathways in minimal invasive strategies.The authors thank the Hospital da Prelada (Porto, Portugal) for providing adipose tissue samples. The authors acknowledge the financial support from project Recognize (UTAP-ICDT/CTM-BIO/0023/2014), project NORTE-01-0145FEDER-000021 supported by the Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), the European Union Framework Programme for Research and Innovation HORIZON 2020, under the TEAMING Grant agreement No. 739572 – The Discoveries CTR EU, Forecast 668983, Marie Skłodowska-Curie grant agreement No. 706996 (PrinTendon) and CHEM2NATURE 692333; FCT/MCTES (Fundação para a Ciência e a Tecnologia/ Ministério da Ciência, Tecnologia, e Ensino Superior) and the Fundo Social Europeu através do Programa Operacional do Capital Humano (FSE/POCH) in the framework of PhD grant PD/59/2013 – PD/BD/113807/2015 for BBM, Post-Doc grant SFRH/BPD/112459/2015 for R.D.info:eu-repo/semantics/publishedVersio

    Metal-organic frameworks with designed chiral recognition sites

    No full text
    Linking struts containing Cram-like bisbinaphthyl[22]crown-6 with Zn4O(CO2)6 joints affords metal–organic frameworks with chiral recognition sites that are highly designed, ordered and placed in a precise manner throughout the entire crystal.Cory Valente, Eunwoo Choi, Matthew E. Belowich, Christian J. Doonan, Qiaowei Li, Travis B. Gasa, Youssry Y. Botros, Omar M. Yaghi and J. Fraser Stoddar

    Application of Crystallization-Induced Asymmetric Transformation to a General, Scalable Method for the Resolution of 2,8-Disubstituted Tröger’s Base Derivatives

    No full text
    A general method for the gram scale resolution of 2-substituted and 2,8-disubstituted Tröger’s base (TB) derivatives in 63–91% yield has been achieved through the application of crystallization-induced asymmetric transformation (CIAT). Enantiomeric ratios of the resolved TB derivatives range from 99.1:0.9 to >99.5:0.5. Among the Tröger’s base compounds resolved are four synthetically valuable bromo and iodo derivatives
    corecore