192 research outputs found

    Ergodicity and spectral cascades in point vortex flows on the sphere

    Get PDF
    A.C.P. was supported under DOD (MURI) Grant No. N000141110087 ONR. The computations were supported by the CUNY HPCC under NSF Grants No. CNS-0855217 and No. CNS-0958379.We present results for the equilibrium statistics and dynamic evolution of moderately large [n = O (102 - 103)] numbers of interacting point vortices on the sphere under the constraint of zero mean angular momentum. For systems with equal numbers of positive and negative identical circulations, the density of rescaled energies, p(E), converges rapidly with n to a function with a single maximum with maximum entropy. Ensemble-averaged wave-number spectra of the nonsingular velocity field induced by the vortices exhibit the expected k-1 behavior at small scales for all energies. Spectra at the largest scales vary continuously with the inverse temperature of the system. For positive temperatures, spectra peak at finite intermediate wave numbers; for negative temperatures, spectra decrease everywhere. Comparisons of time and ensemble averages, over a large range of energies, strongly support ergodicity in the dynamics even for highly atypical initial vortex configurations. Crucially, rapid relaxation of spectra toward the microcanonical average implies that the direction of any spectral cascade process depends only on the relative difference between the initial spectrum and the ensemble mean spectrum at that energy, not on the energy, or temperature, of the system.Publisher PDFPeer reviewe

    Breaking Kelvin: Circulation conservation and vortex breakup in MHD at low Magnetic Prandtl Number

    Full text link
    In this paper we examine the role of weak magnetic fields in breaking Kelvin's circulation theorem and in vortex breakup in two-dimensional magnetohydrodynamics for the physically important case of a low magnetic Prandtl number (low PmPm) fluid. We consider three canonical inviscid solutions for the purely hydrodynamical problem, namely a Gaussian vortex, a circular vortex patch and an elliptical vortex patch. We examine how magnetic fields lead to an initial loss of circulation Γ\Gamma and attempt to derive scaling laws for the loss of circulation as a function of field strength and diffusion as measured by two non-dimensional parameters. We show that for all cases the loss of circulation depends on the integrated effects of the Lorentz force, with the patch cases leading to significantly greater circulation loss. For the case of the elliptical vortex the loss of circulation depends on the total area swept out by the rotating vortex and so this leads to more efficient circulation loss than for a circular vortex.Comment: 21 pages, 12 figure

    The magnetic non-hydrostatic shallow-water model

    Get PDF
    Funding: DGD would like to thank the Leverhulme Trust for support received during a Research Fellowship. SMT was supported by funding from the European Research Council (ERC) under the EU's Horizon 2020 research and innovation programme (grant agreement D5S-DLV-786780).We consider the dynamics of a set of reduced equations describing the evolution of a magnetised, rotating stably stratified fluid layer, atop a stagnant dense, perfectly conducting layer. We consider two closely related models. In the first, the layer has, above it, relatively light fluid where the magnetic pressure is much larger than the gas pressure, and the magnetic field is largely force-free. In the second model, the magnetic field is constrained to lie within the dynamical layer by the implementation of a model diffusion operator for the magnetic field. The model derivation proceeds by assuming that the horizontal velocity and the horizontal magnetic field are independent of the vertical coordinate, whilst the vertical components in the layer have a linear dependence on height. The full system comprises evolution equations for the magnetic field, horizontal velocity and height field together with a linear elliptic equation for the vertically integrated non-hydrostatic pressure. In the magneto-hydrostatic limit, these equations simplify to equations of shallow-water type. Numerical solutions for both models are provided for the fiducial case of a Gaussian vortex interacting with a magnetic field. The solutions are shown to differ negligibly. We investigate how the interaction of the vortex changes in response to the magnetic Reynolds number Rm, the Rossby deformation radius LD, and a Coriolis buoyancy frequency ratio f/N measuring the significance of non-hydrostatic effects. The magneto-hydrostatic limit corresponds to f/N→0.Publisher PDFPeer reviewe

    Vortex scaling ranges in two-dimensional turbulence

    Get PDF
    We survey the role of coherent vortices in two-dimensional turbulence, including formation mechanisms, implications for classical similarity and inertial range theories, and characteristics of the vortex populations. We review early work on the spatial and temporal scaling properties of vortices in freely evolving turbulence and more recent developments, including a spatiotemporal scaling theory for vortices in the forced inverse energy cascade. We emphasize that Kraichnan-Batchelor similarity theories and vortex scaling theories are best viewed as complementary and together provide a more complete description of two-dimensional turbulence. In particular, similarity theory has a continued role in describing the weak filamentary sea between the vortices. Moreover, we locate both classical inertial and vortex scaling ranges within the broader framework of scaling in far-from-equilibrium systems, which generically exhibit multiple fixed point solutions with distinct scaling behaviour. We describe how stationary transport in a range of scales comoving with the dilatation of flow features, as measured by the growth in vortex area, constrains the vortex number density in both freely evolving and forced two-dimensional turbulence. The new theories for coherent vortices reveal previously hidden nontrivial scaling, point to new dynamical understanding, and provide a novel exciting window into two-dimensional turbulence.PostprintPeer reviewe

    Interaction between a surface quasi-geostrophic buoyancy anomaly jet and internal vortices

    Get PDF
    This paper addresses the dynamical coupling of the ocean's surface and the ocean's interior. In particular, we investigate the dynamics of an oceanic surface jet, and its interaction with vortices at depth. The jet is induced by buoyancy (density) anomalies at the surface. We first focus on the jet alone. The linear stability indicates there are two modes of instability: the sinuous and the varicose modes. When a vortex in present below the jet, it interacts with it. The velocity field induced by the vortex perturbs the jet and triggers its destabilisation. The jet also influences the vortex by pushing it under a region of co-operative shear. Strong jets may also partially shear out the vortex. We also investigate the interaction between a surface jet and a vortex dipole in the interior. Again, strong jets may partially shear out the vortex structure. The jet also modifies the trajectory of the dipole. Dipoles travelling towards the jet at shallow incidence angles may be reflected by the jet. Vortices travelling at moderate incidence angles normally cross below the jet. This is related to the displacement of the two vortices of the dipole by the shear induced by the jet. Intense jets may also destabilise early and form streets of billows. These billows can pair with the vortices and separate the dipole.PostprintPeer reviewe

    The interaction of two asymmetric quasi-geostrophic vortex patches

    Get PDF
    Herein we study the general interaction of two vortex patches in a single-layer quasi-geostrophic shallow-water flow. Steadily-rotating equilibrium states are found over a wide parameter space spanning the Rossby deformation length, vortex area ratio, potential vorticity ratio, and gap between their innermost edges. A linear stability analysis is then used to identify the critical gap separating stable and unstable solutions, over the entire range of area and potential vorticity ratios, and for selected values of the Rossby deformation length. A representative set of marginally unstable equilibrium states are then slightly perturbed and evolved by an accurate contour dynamics numerical algorithm to understand the long-term fate of the instabilities. Not all instabilities lead to vortex merger; many in fact are characterised by weak filamentation and a small adjustment of the vortex shapes, without merger. Stronger instabilities lead to material being torn from one vortex and either wrapped around the other or reduced to ever thinning filamentary debris. A portion of the vortex may survive, or it may be completely strained out by the other.PostprintPeer reviewe
    • …
    corecore