29 research outputs found
Spin and charge transport in graphene-based spin transport devices with Co/MgO spin injection and spin detection electrodes
In this review we discuss spin and charge transport properties in
graphene-based single-layer and few-layer spin-valve devices. We give an
overview of challenges and recent advances in the field of device fabrication
and discuss two of our fabrication methods in more detail which result in
distinctly different device performances. In the first class of devices, Co/MgO
electrodes are directly deposited onto graphene which results in rough
MgO-to-Co interfaces and favor the formation of conducting pinholes throughout
the MgO layer. We show that the contact resistance area product (RA) is a
benchmark for spin transport properties as it scales with the measured spin
lifetime in these devices indicating that contact-induced spin dephasing is the
bottleneck for spin transport even in devices with large RA values. In a
second class of devices, Co/MgO electrodes are first patterned onto a silicon
substrate. Subsequently, a graphene-hBN heterostructure is directly transferred
onto these prepatterned electrodes which provides improved interface
properties. This is seen by a strong enhancement of both charge and spin
transport properties yielding charge carrier mobilities exceeding 20000
cm/(Vs) and spin lifetimes up to 3.7 ns at room temperature. We discuss
several shortcomings in the determination of both quantities which complicates
the analysis of both extrinsic and intrinsic spin scattering mechanisms.
Furthermore, we show that contacts can be the origin of a second charge
neutrality point in gate dependent resistance measurements which is influenced
by the quantum capacitance of the underlying graphene layer.Comment: 19 pages, 8 figure
Contact-induced charge contributions to non-local spin transport measurements in Co/MgO/graphene devices
Recently, it has been shown that oxide barriers in graphene-based non-local
spin-valve structures can be the bottleneck for spin transport. The barriers
may cause spin dephasing during or right after electrical spin injection which
limit spin transport parameters such as the spin lifetime of the whole device.
An important task is to evaluate the quality of the oxide barriers of both spin
injection and detection contacts in a fabricated device. To address this issue,
we discuss the influence of spatially inhomogeneous oxide barriers and
especially conducting pinholes within the barrier on the background signal in
non-local measurements of graphene/MgO/Co spin-valve devices. By both
simulations and reference measurements on devices with non-ferromagnetic
electrodes, we demonstrate that the background signal can be caused by
inhomogeneous current flow through the oxide barriers. As a main result, we
demonstrate the existence of charge accumulation next to the actual spin
accumulation signal in non-local voltage measurements, which can be explained
by a redistribution of charge carriers by a perpendicular magnetic field
similar to the classical Hall effect. Furthermore, we present systematic
studies on the phase of the low frequency non-local ac voltage signal which is
measured in non-local spin measurements when applying ac lock-in techniques.
This phase has so far widely been neglected in the analysis of non-local spin
transport. We demonstrate that this phase is another hallmark of the
homogeneity of the MgO spin injection and detection barriers. We link backgate
dependent changes of the phase to the interplay between the capacitance of the
oxide barrier to the quantum capacitance of graphene.Comment: 19 pages, 7 figure
Role of MgO barriers for spin and charge transport in Co/MgO/graphene non-local spin-valve devices
We investigate spin and charge transport in both single and bilayer graphene
non-local spin-valve devices. Similar to previous studies on bilayer graphene,
we observe an inverse dependence of the spin lifetime on the carrier mobility
in our single layer devices. This general trend is only observed in devices
with large contact resistances. Furthermore, we observe a second Dirac peak in
devices with long spin lifetimes. This results from charge transport underneath
the contacts. In contrast, all devices with low ohmic contact resistances only
exhibit a single Dirac peak. Additionally, the spin lifetime is significantly
reduced indicating that an additional spin dephasing occurs underneath the
electrodes.Comment: 5 pages, 3 figure
Strongly anisotropic spin relaxation in graphene/transition metal dichalcogenide heterostructures at room temperature
Graphene has emerged as the foremost material for future two-dimensional
spintronics due to its tuneable electronic properties. In graphene, spin
information can be transported over long distances and, in principle, be
manipulated by using magnetic correlations or large spin-orbit coupling (SOC)
induced by proximity effects. In particular, a dramatic SOC enhancement has
been predicted when interfacing graphene with a semiconducting transition metal
dechalcogenide, such as tungsten disulphide (WS). Signatures of such an
enhancement have recently been reported but the nature of the spin relaxation
in these systems remains unknown. Here, we unambiguously demonstrate
anisotropic spin dynamics in bilayer heterostructures comprising graphene and
WS. By using out-of-plane spin precession, we show that the spin lifetime
is largest when the spins point out of the graphene plane. Moreover, we observe
that the spin lifetime varies over one order of magnitude depending on the spin
orientation, indicating that the strong spin-valley coupling in WS is
imprinted in the bilayer and felt by the propagating spins. These findings
provide a rich platform to explore coupled spin-valley phenomena and offer
novel spin manipulation strategies based on spin relaxation anisotropy in
two-dimensional materials
Electronic Spin Transport in Dual-Gated Bilayer Graphene
The elimination of extrinsic sources of spin relaxation is key in realizing
the exceptional intrinsic spin transport performance of graphene. Towards this,
we study charge and spin transport in bilayer graphene-based spin valve devices
fabricated in a new device architecture which allows us to make a comparative
study by separately investigating the roles of substrate and polymer residues
on spin relaxation. First, the comparison between spin valves fabricated on
SiO2 and BN substrates suggests that substrate-related charged impurities,
phonons and roughness do not limit the spin transport in current devices. Next,
the observation of a 5-fold enhancement in spin relaxation time in the
encapsulated device highlights the significance of polymer residues on spin
relaxation. We observe a spin relaxation length of ~ 10 um in the encapsulated
bilayer with a charge mobility of 24000 cm2/Vs. The carrier density dependence
of spin relaxation time has two distinct regimes; n<4 x 1012 cm-2, where spin
relaxation time decreases monotonically as carrier concentration increases, and
n>4 x 1012 cm-2, where spin relaxation time exhibits a sudden increase. The
sudden increase in the spin relaxation time with no corresponding signature in
the charge transport suggests the presence of a magnetic resonance close to the
charge neutrality point. We also demonstrate, for the first time, spin
transport across bipolar p-n junctions in our dual-gated device architecture
that fully integrates a sequence of encapsulated regions in its design. At low
temperatures, strong suppression of the spin signal was observed while a
transport gap was induced, which is interpreted as a novel manifestation of
impedance mismatch within the spin channel
Nanosecond spin lifetimes in single- and few-layer graphene-hBN heterostructures at room temperature
We present a new fabrication method of graphene spin-valve devices which
yields enhanced spin and charge transport properties by improving both the
electrode-to-graphene and graphene-to-substrate interface. First, we prepare
Co/MgO spin injection electrodes onto Si/SiO. Thereafter, we
mechanically transfer a graphene-hBN heterostructure onto the prepatterned
electrodes. We show that room temperature spin transport in single-, bi- and
trilayer graphene devices exhibit nanosecond spin lifetimes with spin diffusion
lengths reaching 10m combined with carrier mobilities exceeding 20,000
cm/Vs.Comment: 15 pages, 5 figure
Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes
Two-dimensional materials offer new opportunities for both fundamental
science and technological applications, by exploiting the electron spin. While
graphene is very promising for spin communication due to its extraordinary
electron mobility, the lack of a band gap restricts its prospects for
semiconducting spin devices such as spin diodes and bipolar spin transistors.
The recent emergence of 2D semiconductors could help overcome this basic
challenge. In this letter we report the first important step towards making 2D
semiconductor spin devices. We have fabricated a spin valve based on ultra-thin
(5 nm) semiconducting black phosphorus (bP), and established fundamental spin
properties of this spin channel material which supports all electrical spin
injection, transport, precession and detection up to room temperature (RT).
Inserting a few layers of boron nitride between the ferromagnetic electrodes
and bP alleviates the notorious conductivity mismatch problem and allows
efficient electrical spin injection into an n-type bP. In the non-local spin
valve geometry we measure Hanle spin precession and observe spin relaxation
times as high as 4 ns, with spin relaxation lengths exceeding 6 um. Our
experimental results are in a very good agreement with first-principles
calculations and demonstrate that Elliott-Yafet spin relaxation mechanism is
dominant. We also demonstrate that spin transport in ultra-thin bP depends
strongly on the charge carrier concentration, and can be manipulated by the
electric field effect