14 research outputs found

    Development of fluorochromic polymer doped materials as platforms for temperature sensing using three dansyl derivatives bearing a sulfur bridge

    Get PDF
    PM003/2016. Funding Information: G. D. thanks to the European Regional Development Fund within the Operational Programme Science and Education for Smart Growth 2014 - 2020 under the Project Center of Excellence: National center of mechatronics and clean technologies - BG05M2OP001-1.001-0008 for the financial support. Publisher Copyright: © 2023 The Author(s)Three novel bis-dansyl derivatives bearing a sulfur bridge have been synthesized, fully characterized, and their photophysical characterization studied in solution, as well as, in the solid state. All compounds exhibit fluorescence emission with quantum yields up to 60%, which vary significantly depending on the solvent used, and the inherent molecular structure. Moreover, these compounds demonstrate positive solvatofluorochromic behaviour emitting from bluish-green to yellow. Kamlet-Taft studies were performed to better understand the solute–solvent interactions. Due to the intrinsic characteristics of the compounds, efforts were made to understand their potential usefulness for environmental remediation and thus metal ion sensing studies were investigated. Compounds L1 and L2 showed high sensitivity to Cu2+ and Hg2+ ions and were found to modulate their emission extensively, with L2 capable of detecting and quantifying up to 4 µM of Hg2+. Considering the solid-state emission of these compounds, the application towards temperature sensing was put forth. L3 was found to quench its emission in a linear relation with temperature up to 170 °C. Several doped polymer thin films were fabricated, which served as a platform to establish a linear relation with temperature beyond their melting point. Polymethylmetacrylate (PMMA) films emitted up to temperatures of 218 °C, which could be fully restored at room temperature. These results suggest the potential application of these bis-chromophoric compounds as molecular thermometers.publishersversionpublishe

    Tautomerism as primary signaling mechanism in metal sensing: the case of amide group

    Get PDF
    The concept for sensing systems using the tautomerism as elementary signaling process has been further developed by synthesizing a ligand containing 4- (phenyldiazenyl)naphthalene-1-ol as a tautomeric block and an amide group as metal capturing antenna. Although it has been expected that the intramolecular hydrogen bonding (between the tautomeric hydroxy group and the nitrogen atom from the amide group) could stabilize the pure enol form in some solvents, the keto tautomer is also observed. This is a result from the formation of intramolecular associates in some solvents. Strong bathochromic and hyperchromic effects in the visible spectra accompany the 1:1 formation of complexes with some alkaline earth metal ions

    Pollutant metal ions detection and preparation of water-soluble fluorescent polymeric particles

    Get PDF
    Funding Information: G.D. thanks to the European Regional Development Fund within the Operational Programme Science and Education for Smart Growth 2014–2020 under the Project Center of Exellence: National center of mechatronics and clean technologies - BG05M2OP001-1.001-0008 for the financial support. Funding Information: This work was supported by the Associate Laboratory for Green Chemistry - LAQV which is financed by national funds from FCT/MCTES ( UIDB/50006/2020 and UIDP/50006/2020 ) as well as the PROTEOMASS Scientific Society (Portugal) for funding support (General Funding Grant 2022–2023). F.D. thanks to FCT / MEC (Portugal) for his doctoral grant 2021.05161.BD . E.O thanks FCT / MEC (Portugal) for the individual contract, CEECIND/00648/2017. J.F-.L. thanks the FCT / MEC (Portugal) for the individual research contract DL57. HMS acknowledges the Associate Laboratory for Green Chemistry-LAQV ( LA/P/0008/2020 ) funded by FCT / MCTES for his research contract. Funding Information: The financial support by the Bulgarian National Science Fund (BNSF) under grant – “Novel styryl and polymethine fluorophores as potential theranostic agents “contract N◦ КП-06-М59/1 from 15.11.2021 is gratefully acknowledged by A.K. This work is also developed and acknowledged by A.K. as part of contract №: BG-RRP-2.004-0002-C01, Laboratory of Organic Functional Materials (Project BiOrgaMCT), Procedure BG-RRP-2.004, Establishing of a network of research higher education institutions in Bulgaria”, funded by BULGARIAN NATIONAL RECOVERY AND RESILIENCE PLAN ”. Publisher Copyright: © 2023 The AuthorsPolarity-sensitive dansyl derivatives L1 and L2 were synthesized and their ability to sense pollutant metal ions was investigated. All compounds were found to be highly sensitive towards Cu2+ and Hg2+ metal ions, while L2 being able to detect and quantify Hg2+ concentrations as low as 2.5 μM. Both L1 and L2 exhibit positive solvatofluorochromic behaviour, modulated in the presence of water, which in turn results in fluorescence enhancement via aggregation-induced emission (AIE). Seeking stability and water solubility, luminescent L1-based polystyrene-block-polybutadiene-block-polystyrene (SBS) microparticles (size: 520 ± 76 nm) were successfully prepared while maintaining the fluorescence emission of fluorophore L1 (φ = 22%). This work exemplifies the multiple properties of dansyl-derivatives and their promising applications in biomedicine and environmental fields.publishersversionpublishe

    Synthesis, characterization and complex evaluation of antibacterial activity and cytotoxicity of new arylmethylidene ketones and pyrimidines with camphane skeletons

    Get PDF
    The synthesis of 20 arylidenecamphors and 15 pyrimidines with camphane skeleton is described in the current report. A modified method for preparation of sterically hindered 2- aminopyrimidines in two steps was demonstrated. The evaluation of their in vitro activity against Mycobacterium tuberculosis H37Rv showed different MIC values (up to 0.91 μM for ketone 39). Compound 35 demonstrated moderate (8.23 μM), but sustainable activity toward a collection of drug-resistant M. tuberculosis strains. Many of the compounds (especially among 2-aminopyridines 42–56) exhibited good to excellent activity against different strains of pathogenic bacteria and fungi (MIC up to 0.60 μM for compound 50), compared with reference antibiotics. Many of the newly designed compounds possess also in vitro cytotoxicity.This study was supported by: Bulgarian National Science Fund- project KP-06-H39/7 and Spanish Ministry of Science, Innovation and Universities- Grant RTI2018-094629-BI00. MEDINA’s authors disclosed the receipt of financial support from Fundación MEDINA, a public-private partnership of Merck Sharp and Dohme de EspañaS.A./Universidad de Granada/Junta de Andalucía

    Chiral Aminoalcohols and Squaric Acid Amides as Ligands for Asymmetric Borane Reduction of Ketones: Insight to In Situ Formed Catalytic System by DOSY and Multinuclear NMR Experiments

    No full text
    A series of squaric acid amides (synthesized in 66–99% isolated yields) and a set of chiral aminoalcohols were comparatively studied as ligands in a model reaction of reduction of α-chloroacetophenone with BH3•SMe2. In all cases, the aminoalcohols demonstrated better efficiency (up to 94% ee), while only poor asymmetric induction was achieved with the corresponding squaramides. A mechanistic insight on the in situ formation and stability at room temperature of intermediates generated from ligands and borane as possible precursors of the oxazaborolidine-based catalytic system has been obtained by 1H DOSY and multinuclear 1D and 2D (1H, 10/11B, 13C, 15N) NMR spectroscopy of equimolar mixtures of borane and selected ligands. These results contribute to better understanding the complexity of the processes occurring in the reaction mixture prior to the possible oxazaborolidine formation, which play a crucial role on the degree of enantioselectivity achieved in the borane reduction of α-chloroacetophenone

    Base-promoted direct amidation of esters : beyond the current scope and practical applications

    No full text
    The base-promoted direct amidation of unactivated esters is among the most useful reactions for amide bond formation in contemporary organic chemistry. The intensive research in this area has led to the development of a number of new methods to achive this transformation. However, to date, the existing literature is more methodological and in many instances lacks practical directions. Therefore, the full potential of this transformation is yet to be revealed by broadening the substrate scope. In a search for new practical applications of the amidation reaction, herein we present a comprehensive study of a number of base-promoted direct amidations that encompass a wide range of amines and esters. Furthermore, we applied our findings in the synthesis of phosphoramidates and several industrially relevant products.peerReviewe

    In Vitro Anticancer Activity of Two Ferrocene-Containing Camphor Sulfonamides as Promising Agents against Lung Cancer Cells

    No full text
    The successful design of antitumour drugs often combines in one molecule different biologically active subunits that can affect various regulatory pathways in the cell and thus achieve higher efficacy. Two ferrocene derivatives, DK-164 and CC-78, with different residues were tested for cytotoxic potential on non-small lung cancer cell lines, A549 and H1299, and non-cancerous MRC5. DK-164 demonstrated remarkable selectivity toward cancer cells and more pronounced cytotoxicity against A549. The cytotoxicity of CC-78 toward H1299 was even higher than that of the well-established anticancer drugs cisplatin and tamoxifen, but it did not reveal any noticeable selective effect. DK-164 showed predominantly pro-apoptotic activity in non-small cell lung carcinoma (NSCLC) cells, while CC-78 caused accidental cell death with features characteristic of necrosis. The level of induced autophagy was similar for both substances in cancer cells. DK-164 treatment of A549, H1299, and MRC5 cells for 48 h significantly increased the fluorescence signal of the NFkB (nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells) protein in the nucleus in all three cell lines, while CC-78 did not provoke NFkB translocation in any of the tested cell lines. Both compounds caused a significant transfer of the p53 protein in the nucleus of A549 cells but not in non-cancerous MRC5 cells. In A549, DK-164 generated oxidative stress close to the positive control after 48 h, while CC-78 had a moderate effect on the cellular redox status. In the non-cancerous cells, MRC5, both compounds produced ROS similar to the positive control for the same incubation period. The different results related to the cytotoxic potential of DK-164 and CC-78 associated with the examined cellular mechanisms induced in lung cancer cells might be used to conclude the specific functions of the various functional groups in the ferrocene compounds, which can offer new perspectives for the design of antitumour drugs

    Structure and Conformational Mobility of OLED-Relevant 1,3,5-Triazine Derivatives

    No full text
    A series of OLED-relevant compounds, consisting of 1,3,5-triazine core linked to various aromatic arms by amino group, has been synthesized and characterized. The studied compounds exist in solution as a mixture of two conformers, a symmetric propeller and asymmetric conformer, in which one of the aromatic arms is rotated around the C-N bond. At temperatures below −40 °C, the VT NMR spectra in DMF-d7 are in a slow exchange regime, and the signals of two conformers can be elucidated. At temperatures above 100 °C, the VT NMR spectra in DMSO-d6 are in a fast exchange regime, and the averaged spectra can be measured. The ratio of symmetric and asymmetric conformers in DMF-d7 varies from 14:86 to 50:50 depending on the substituents. The rotational barriers of symmetric and asymmetric conformers in DMF-d7 were measured for all compounds and are in the interval from 11.7 to 14.7 kcal/mol. The ground-state energy landscapes of the studied compounds, obtained by DFT calculations, show good agreement with the experimental rotational barriers. The DFT calculations reveal that the observed chemical exchange occurs by the rotation around the C(1,3,5-triazine)-N bond. Although some of the compounds are potentially tautomeric, the measured absorption and emission spectra do not indicate proton transfer neither in the ground nor in the excited state

    Structure and Conformational Mobility of OLED-Relevant 1,3,5-Triazine Derivatives

    No full text
    A series of OLED-relevant compounds, consisting of 1,3,5-triazine core linked to various aromatic arms by amino group, has been synthesized and characterized. The studied compounds exist in solution as a mixture of two conformers, a symmetric propeller and asymmetric conformer, in which one of the aromatic arms is rotated around the C-N bond. At temperatures below −40 °C, the VT NMR spectra in DMF-d7 are in a slow exchange regime, and the signals of two conformers can be elucidated. At temperatures above 100 °C, the VT NMR spectra in DMSO-d6 are in a fast exchange regime, and the averaged spectra can be measured. The ratio of symmetric and asymmetric conformers in DMF-d7 varies from 14:86 to 50:50 depending on the substituents. The rotational barriers of symmetric and asymmetric conformers in DMF-d7 were measured for all compounds and are in the interval from 11.7 to 14.7 kcal/mol. The ground-state energy landscapes of the studied compounds, obtained by DFT calculations, show good agreement with the experimental rotational barriers. The DFT calculations reveal that the observed chemical exchange occurs by the rotation around the C(1,3,5-triazine)-N bond. Although some of the compounds are potentially tautomeric, the measured absorption and emission spectra do not indicate proton transfer neither in the ground nor in the excited state

    Development of fluorochromic polymer doped materials as platforms for temperature sensing using three dansyl derivatives bearing a sulfur bridge.

    No full text
    Three novel bis-dansyl derivatives bearing a sulfur bridge have been synthesized and fully characterized. Their photophysical characterization has been studied in solution as well as in the solid state. All compounds exhibit fluorescence emission with quantum yields up to 60%, which vary significantly depending on the solvent used, and the inherent molecular structure. Moreover, these compounds demonstrate positive solvatofluorochromic behaviour emitting from bluish-green to yellow. Kamlet-Taft studies were performed to understand the solute-solvent interactions better. Due to the intrinsic characteristics of the compounds, efforts were made to understand their potential usefulness for environmental remediation, and thus metal ion sensing studies were investigated. Compounds L1 and L2 showed high sensitivity to Cu2+ and Hg2+ ions and were found to modulate their emission extensively, with L2 capable of detecting and quantifying up to 4 µM of Hg2+. Considering the solid-state emission of these compounds, the application towards temperature sensing was put forth. L3 was found to quench its emission linearly with temperatures up to 170 ºC. Several doped polymer thin films were fabricated, which served as a platform to establish a linear relation with temperature beyond their melting point. Polymethylmethacrylate (PMMA) films emitted up to temperatures of 218 ºC, which could be fully restored at room temperature. These results suggest the potential application of these bis-chromophoric compounds as molecular thermometers
    corecore