255 research outputs found
iCrawl: Improving the Freshness of Web Collections by Integrating Social Web and Focused Web Crawling
Researchers in the Digital Humanities and journalists need to monitor,
collect and analyze fresh online content regarding current events such as the
Ebola outbreak or the Ukraine crisis on demand. However, existing focused
crawling approaches only consider topical aspects while ignoring temporal
aspects and therefore cannot achieve thematically coherent and fresh Web
collections. Especially Social Media provide a rich source of fresh content,
which is not used by state-of-the-art focused crawlers. In this paper we
address the issues of enabling the collection of fresh and relevant Web and
Social Web content for a topic of interest through seamless integration of Web
and Social Media in a novel integrated focused crawler. The crawler collects
Web and Social Media content in a single system and exploits the stream of
fresh Social Media content for guiding the crawler.Comment: Published in the Proceedings of the 15th ACM/IEEE-CS Joint Conference
on Digital Libraries 201
Energetic BEM for the numerical analysis of 2D Dirichlet damped wave propagation exterior problems
Abstract Time-dependent problems modeled by hyperbolic partial differential equations can be reformulated in terms of boundary integral equations and solved via the boundary element method. In this context, the analysis of damping phenomena that occur in many physics and engineering problems is a novelty. Starting from a recently developed energetic space-time weak formulation for 1D damped wave propagation problems rewritten in terms of boundary integral equations, we develop here an extension of the so-called energetic boundary element method for the 2D case. Several numerical benchmarks, whose numerical results confirm accuracy and stability of the proposed technique, already proved for the numerical treatment of undamped wave propagation problems in several dimensions and for the 1D damped case, are illustrated and discussed
Combining learning and constraints for genome-wide protein annotation
BackgroundThe advent of high-throughput experimental techniques paved the way to genome-wide computational analysis and predictive annotation studies. When considering the joint annotation of a large set of related entities, like all proteins of a certain genome, many candidate annotations could be inconsistent, or very unlikely, given the existing knowledge. A sound predictive framework capable of accounting for this type of constraints in making predictions could substantially contribute to the quality of machine-generated annotations at a genomic scale.ResultsWe present Ocelot, a predictive pipeline which simultaneously addresses functional and interaction annotation of all proteins of a given genome. The system combines sequence-based predictors for functional and protein-protein interaction (PPI) prediction with a consistency layer enforcing (soft) constraints as fuzzy logic rules. The enforced rules represent the available prior knowledge about the classification task, including taxonomic constraints over each GO hierarchy (e.g. a protein labeled with a GO term should also be labeled with all ancestor terms) as well as rules combining interaction and function prediction. An extensive experimental evaluation on the Yeast genome shows that the integration of prior knowledge via rules substantially improves the quality of the predictions. The system largely outperforms GoFDR, the only high-ranking system at the last CAFA challenge with a readily available implementation, when GoFDR is given access to intra-genome information only (as Ocelot), and has comparable or better results (depending on the hierarchy and performance measure) when GoFDR is allowed to use information from other genomes. Our system also compares favorably to recent methods based on deep learning
Application of Energetic BEM to 2D Elastodynamic Soft Scattering Problems
Abstract
Starting from a recently developed energetic space-time weak formulation of the Boundary Integral Equations related to scalar wave propagation problems, in this paper we focus for the first time on the 2D elastodynamic extension of the above wave propagation analysis. In particular, we consider elastodynamic scattering problems by open arcs, with vanishing initial and Dirichlet boundary conditions and we assess the efficiency and accuracy of the proposed method, on the basis of numerical results obtained for benchmark problems having available analytical solution
Deep Tree Transductions - A Short Survey
The paper surveys recent extensions of the Long-Short Term Memory networks to
handle tree structures from the perspective of learning non-trivial forms of
isomorph structured transductions. It provides a discussion of modern TreeLSTM
models, showing the effect of the bias induced by the direction of tree
processing. An empirical analysis is performed on real-world benchmarks,
highlighting how there is no single model adequate to effectively approach all
transduction problems.Comment: To appear in the Proceedings of the 2019 INNS Big Data and Deep
Learning (INNSBDDL 2019). arXiv admin note: text overlap with
arXiv:1809.0909
Integrating Learning and Reasoning with Deep Logic Models
Deep learning is very effective at jointly learning feature representations
and classification models, especially when dealing with high dimensional input
patterns. Probabilistic logic reasoning, on the other hand, is capable to take
consistent and robust decisions in complex environments. The integration of
deep learning and logic reasoning is still an open-research problem and it is
considered to be the key for the development of real intelligent agents. This
paper presents Deep Logic Models, which are deep graphical models integrating
deep learning and logic reasoning both for learning and inference. Deep Logic
Models create an end-to-end differentiable architecture, where deep learners
are embedded into a network implementing a continuous relaxation of the logic
knowledge. The learning process allows to jointly learn the weights of the deep
learners and the meta-parameters controlling the high-level reasoning. The
experimental results show that the proposed methodology overtakes the
limitations of the other approaches that have been proposed to bridge deep
learning and reasoning
Relational neural machines
Deep learning has been shown to achieve impressive results in several tasks where a large amount of training data is available. However, deep learning solely focuses on the accuracy of the predictions, neglecting the reasoning process leading to a decision, which is a major issue in life-critical applications. Probabilistic logic reasoning allows to exploit both statistical regularities and specific domain expertise to perform reasoning under uncertainty, but its scalability and brittle integration with the layers processing the sensory data have greatly limited its applications. For these reasons, combining deep architectures and probabilistic logic reasoning is a fundamental goal towards the development of intelligent agents operating in complex environments. This paper presents Relational Neural Machines, a novel framework allowing to jointly train the parameters of the learners and of a First-Order Logic based reasoner. A Relational Neural Machine is able to recover both classical learning from supervised data in case of pure sub-symbolic learning, and Markov Logic Networks in case of pure symbolic reasoning, while allowing to jointly train and perform inference in hybrid learning tasks. Proper algorithmic solutions are devised to make learning and inference tractable in large-scale problems. The experiments show promising results in different relational tasks
- …