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Abstract

Time-dependent problems modeled by hyperbolic partial differential equations can
be reformulated in terms of boundary integral equations and solved via the boundary
element method. In this context, the analysis of damping phenomena that occur in many
physics and engineering problems is a novelty. Starting from a recently developed ener-
getic space-time weak formulation for 1D damped wave propagation problems rewritten
in terms of boundary integral equations, we develop here an extension of the so-called en-
ergetic boundary element method for the 2D case. Several numerical benchmarks, whose
numerical results confirm accuracy and stability of the proposed technique, already proved
for the numerical treatment of undamped wave propagation problems in several dimen-
sions and for the 1D damped case, are illustrated and discussed.

Keywords: Damped wave equation, energy, boundary element method

AMS subject classification: 65N38

1. Introduction

A variety of engineering and physical applications, such as the propa-
gation or the scattering of acoustic or electromagnetic waves, leads to the
problem of solving linear hyperbolic partial differential equations (PDEs) in
two or three dimensional space [1–3]. These problems are normally consid-
ered in an unbounded homogeneous domain and a method to tackle them
is to reformulate the PDE as a boundary integral equation (BIE) on the
usually bounded boundary of the domain, which can then be numerically
solved using the boundary element method (BEM) [4,5]. This approach is
useful especially for solving problems of practical importance with irregu-
lar geometries. Further, in some applications, the physically relevant data
are given not by the solution in the interior of the domain but rather by
the boundary values of the solution or its derivatives. These data can be
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obtained directly from the solution of BIEs, whereas it is well known that
boundary values obtained with low order finite element method (FEM)
solutions are in general not so accurate. Sometimes, however, BEM-FEM
coupling proves to be highly useful [6–8].
In the context of wave propagation, while the elastic forces tends to main-
tain the oscillatory motion, the transient effect dies out because of energy
dissipations. The process of energy dissipation is generally referred to as
damping. The analysis of damping phenomena that occur, for example, in
fluid dynamics, in kinetic theory and in semiconductors, is of particular
interest [9–13]: the dissipation is generated by the interaction between the
waves and the propagation medium and can be also closely related to the
dispersion, as in the interactions between water streams and surface waves
or in ferromagnetic materials. On the other side, in mechanical systems,
in general, damping has the effect of reducing the amplitude of vibration
and, therefore, it is desirable to have some amount of damping in order to
faster achieve stability. Hence, damping is whether an unavoidable presence
in physical reality or a desired characteristic in design.
The use of advanced numerical techniques to solve the related PDEs, such
as FEM and the finite difference methods (FDM) is well established and it
is standard in this framework , even if the research of a numerical method
that could reproduce the expected damping decay is an actual argument
in literature (see [14–16] and their references). On the other hand, in the
context of BEMs the analysis of dissipation through damped wave equation
rewritten as a BIE is a relatively new topic, because it has been scarcely
investigated until now. Since wave propagation phenomena are often ob-
served in semi-infinite media (domain) where Sommerfeld radiation condi-
tion holds, a suitable numerical method has to ensure that this condition is
not violated. For example, FEMs need the application of special techniques
to fulfill this condition that, on the contrary, is implicitly fulfilled by BEM;
hence a suitable coupling of both these techniques, when applicable, gives
undoubted advantages [17,18].
In principle, both frequency-domain and time-domain BEM can be used for
hyperbolic initial-boundary value problems [19–22]. Space-time BEM has
the advantage that it directly yields the unknown time-dependent quanti-
ties. In this last approach, the construction of the BIEs, via representation
formula in terms of single and double layer potentials, uses the fundamen-
tal solution of the hyperbolic partial differential equation and jump rela-
tions [23–25]. The mathematical background of time-dependent boundary
integral equations is summarized by M. Costabel in [26].
For the numerical solution of the damped wave equation in 1D unbounded
media, we have already considered in [17,18,27] the extension of the so-
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called energetic BEM, introduced for the undamped wave equation in sev-
eral space dimensions [28–30]. The analysis carried out for 1D damped wave
propagation problems allowed to fully understand the approximation tech-
nique for what concerns marching on time, avoiding space integration with
BEM singular kernels and it was considered as a touchstone for the exten-
sion to higher space dimensions, which is done here for the 2D case. Also
in this context, the energetic approach gives consistent approximations and
accurate numerical solutions.
Energetic BEM is based on a weak formulation directly expressed in the
space-time domain, thus avoiding the use of the Laplace transform and of
its inversion suggested in [23].
The paper is structured as follows: at first, we present the differential model
problem on an unbounded 2D domain and its energetic boundary weak for-
mulation, then we illustrate the consequent BEM discretization, highlight-
ing problems arising in the numerical integration of singular space-time
integrals. At last, a wide variety of significant numerical benchmarks are
introduced and discussed, showing, from a numerical point of view, sta-
bility and accuracy of the obtained numerical solutions, in particular for
simulations over large time intervals.

2. Model problem and its weak boundary integral formulation

Here we will consider a Dirichlet problem in a bounded time interval [0, T ]
for the damped wave equation exterior to an obstacle, given by an open arc
Γ ⊂ R2:[

∆u− 1

c2
utt −

2D

c2
ut −

P

c2
u
]
(x, t) = 0, x ∈ R2 \ Γ, t ∈ (0, T ](1)

u(x, 0) = ut(x, 0) = 0, x ∈ R2 \ Γ,(2)

u(x, t) = g(x, t), x ∈ Γ, t ∈ (0, T ] ,(3)

where c is the propagation velocity of a perturbation inside the domain,
D and P are, respectively, the viscous and material damping coefficientsa.
Note that if c is measured in m/s, D is measured in s−1 and P in s−2.
Equation (1) appears in different contexts, from electric transmission to
sound propagation, from primary or secondary seismic wave propagation in
presence of intrinsic attenuation to quantum field theory [31–34].

aWhen mechanical systems vibrate in a fluid medium, the resistance offered by the
fluid to the moving body causes energy to be dissipated. The amount of dissipated en-
ergy depends on many factors: in viscous damping, the damping force is proportional to
the velocity of the vibrating body; on the contrary, material damping acts like a linear
restoring force (such as due to a spring) that is proportional to the displacement.
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When D = P = 0 the given PDE collapses to the classic wave equation.
The boundary datum g(x, t) represents the value of the excitation field over
Γ.
Since we want to discretize the above problem using BEM, we have to
rewrite it in a boundary integral form. This can be done using classical
arguments and the knowledge of the fundamental solution of the 2D damped
wave operator. Hence, we start writing the single-layer representation of the
solution of (1)-(3):

(4) u(x, t) =

∫
Γ

∫ t

0
G(x−ξ, t−τ)φ(ξ, τ) dτ dγξ, x ∈ R2 \Γ, t ∈ (0, T ],

where the unknown density φ =

[
∂u

∂n

]
Γ

represents the time history of the

jump of the normal derivative of u along Γ and

(5) G(x, t) =


c

2π e
−Dt

cos

(√
P−D2

c

√
c2t2−‖x‖2

)
√
c2t2−‖x‖2

H[c t− ‖x‖] , P ≥ D2

c
2π e

−Dt
cosh

(√
D2−P
c

√
c2t2−‖x‖2

)
√
c2t2−‖x‖2

H[c t− ‖x‖] , P ≤ D2

is the forward fundamental solution of the 2D damped wave operator, with
H[·] the Heaviside distribution. Definition (5) switches from cos(·) to cosh(·)
depending on the reciprocal magnitude of P and D2: when P > D2 we are
in the so-called underdamping configuration, when P < D2 we are in over-
damping configuration, while the separation state P = D2, referred to the
vanishing of both cos(·) and cosh(·) arguments, is called critical damping.
The usefulness of the two expressions in (5) depends on the problem at
hand: to keep the vibrations as long as possible (as for instance in tuning
fork), it is preferable to construct a physical system with P > D2; on the
contrary, to dampen oscillation as soon as possible or to avoid overshooting
a target configuration, it is necessary to have P < D2.
Note that in the limit for D, P tending to 0, G(x, t) tends to the funda-
mental solution of the 2D undamped wave operator, i.e.

(6) G0(x, t) =
c

2π

H[c t− ‖x‖]√
c2t2 − ‖x‖2

.

Now, it is clear that if we want to recover the solution of the differential
problem at any point outside the obstacle and at any time instant, we have
to proceed with a post-processing phase provided that we know the density
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function φ(x, t). Hence, since the extension of formula (4) for x tending to
Γ is continuous, the unknown density φ can be determined via the assigned
Dirichlet boundary condition (3). This results in the space-time BIE

(7)

∫
Γ

∫ t

0
G(x− ξ, t− τ)φ(ξ, τ) dτ dγξ = g(x, t), x ∈ Γ, t ∈ [0, T ],

which can be written with the compact notation

(8) V φ = g.

Existence and uniqueness of the solution of the Eq. (8) are proved in [35].
The energetic weak formulation of problem (8) is defined similarly as in [29]
and it can be deduced observing that, multiplying the PDE (1) by ut,
integrating over [0, T ] × (R2 \ Γ) and using integration by parts in space,
one obtains that the energy E(u, T ) of the solution u at the final time of
analysis T , defined by
(9)
1

2

∫
R2\Γ

[
‖∇xu(x, T )‖2 +

1

c2
u2
t (x, T ) +

P

c2
u2(x, T ) +

4D

c2

∫ T

0
u2
t (x, t)dt

]
dγx

can be rewritten as

(10) E(u, T ) =

∫
Γ

∫ T

0
ut(x, t)

[∂u
∂n

]
Γ
(x, t) dt dγx .

Hence, remembering the nature of our BIE which is expressing the time
history of u over Γ, we can derive it w.r.t. time and write down the energetic
weak problem associated to (8) as:
find φ ∈ L2(Γ× [0, T ]) such that

(11)

∫
Γ

∫ T

0
(V φ)t(x, t)ψ(x, t) dt dγx =

∫
Γ

∫ T

0
gt(x, t)ψ(x, t) dt dγx ,

where ψ is a suitable test function, belonging to the same functional space
of φ. With an integration in the sense of distributions, we can equivalently
write

(12)

∫
Γ

∫ T

0
(V φ)(x, t)ψt(x, t) dt dγx =

∫
Γ

∫ T

0
g(x, t)ψt(x, t) dt dγx .

Remark.The theoretical analysis of the quadratic form coming from the
left-hand side of (11) was carried out for P = D = 0 in [29] where, under
suitable hypothesis, coercivity was proved with some technicalities. This
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allowed us to deduce stability and convergence of the related Galerkin ap-
proximate solution, which in this paper, for the case of non-trivial damp-
ing coefficients, will be verified from a numerical point of view. On the
contrary, these properties are not guaranteed by the classical collocation
method (see [9,28]).

3. Energetic BEM discretization

We consider on the obstacle Γ, a boundary mesh constituted by M∆x

straight elements {e1, · · · , eM∆x}, with length(ei) ≤ ∆x, ei ∩ ej = ∅ if i 6= j

and such that
⋃M∆x
i=1 ei coincides with Γ if the obstacle is (piece-wise) linear,

or is a suitable approximation of Γ, otherwise. The functional background
compels one to choose space shape functions belonging to L2(Γ), although
higher degree shape functions can be used. Hence we use standard piece-wise
constant polynomial boundary element functions wj(x), j = 1, · · · ,M∆x,
suitably defined in relation to the introduced mesh over Γ.
For time discretization we consider a uniform decomposition of the time
interval [0, T ] with time step ∆ t = T/N∆t , N∆t ∈ N+, generated by the
N∆t + 1 instants

(13) tk = k∆ t, k = 0, · · · , N∆t ,

and we choose piece-wise constant time shape functions. Note that, for this
particular choice, our shape functions, denoted with vk(t), k = 0, · · · , N∆t−
1, will be defined as

(14) vk(t) = H[t− tk]−H[t− tk+1] .

Hence, the approximate solution of the problem at hand will be expressed
as

(15) φ(x, t) '
N∆t−1∑
k=0

M∆x∑
j=1

α
(k)
j wj(x) vk(t).

The Galerkin BEM discretization coming from energetic weak formulation
(12) produces the linear system

(16) Aα = b ,

of order M∆x ·N∆t, where matrix A has a block lower triangular Toeplitz
structure. Each block has dimension M∆x. If we indicate with A(`) the
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block obtained when th − tk = `∆t, ` = 0, . . . , N∆t − 1, the linear system
can be written as

(17)


A(0) 0 0 · · · 0

A(1) A(0) 0 · · · 0

A(2) A(1) A(0) · · · 0
· · · · · · · · · · · · 0

A(N∆t−1) A(N∆t−2) · · · A(1) A(0)




α(0)

α(1)

α(2)

...

α(N∆t−1)

 =


b(0)

b(1)

b(2)

...

b(N∆t−1)


where

(18) α(`) =
(
α

(`)
j

)
and b(`) =

(
b
(`)
j

)
, j = 1, . . . ,M∆x .

The solution of (17) is obtained with a block forward substitution, i.e. at
every time instant t` = `∆t, ` = 0, · · · , N∆t − 1, we solve a reduced linear
system of the type

(19) A(0)α(`) = b(`) − (A(1)α(`−1) + · · ·+A(`)α(0)).

Procedure (19) is a time-marching technique, where the only matrix to
be inverted is the symmetric positive definite diagonal block A(0), while
all the other blocks are used to update at every time step the right-hand
side. Owing to this procedure we can construct and store only the blocks
A(0), · · · , A(N∆t−1) with a considerable reduction of computational cost and
memory requirement [29].

4. Multiple integration issues

In (16), matrix elements are integrals of the form

(20)

∫
Γ

∫ T

0
wi(x) (vh)t(t)

∫
Γ

∫ t

0
G(x− ξ, t− τ)wj(ξ) vk(τ)dτ dγξ dt dγx .

Specifying the choice made for time basis function, quadruple integral (20)
results in a combination of triple integrals of the form

(21)

∫
Γ
wi(x)

∫
Γ
wj(ξ)

∫ th

0
G(x− ξ, th − τ)H[τ − tk]dτ dγξ dγx ,

or equivalently

(22) H[th − tk]
∫

Γ
wi(x)

∫
Γ
wj(ξ)

∫ th

tk

G(x− ξ, th − τ)dτ dγξ dγx .
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The analysis of kernel weak singularities has been performed in detail for the
case of the undamped wave equation, i.e. for P = D = 0, in [29]; in partic-
ular the presence of the Heaviside distribution H[c (t− τ)−‖x−ξ‖], which
represents the wavefront, and of the square root

√
c2(t− τ)2 − ‖x− ξ‖2

can cause a lot of numerical troubles that in [29] have been solved by suit-
able splitting of the outer integral over Γ and using quadrature schemes
which regularize integrand functions with mild singularities for the second
nested integral in space variable [36]. These singularities appear after the
inner time integration.
Since we expect a similar behavior for the damped kernel, we consider the
expansion of G(x− ξ, t− τ) with respect to damping parameters, centered
in P = D = 0, and we rewrite (22) as

(23)

H[th − tk]
∫

Γ
wi(x)

∫
Γ
wj(ξ)

∫ th

tk

[G(x− ξ, th − τ)

−G0(x− ξ, th − τ)]dτ dγξ dγx

+H[th − tk]

∫
Γ

wi(x)

∫
Γ

wj(ξ)

∫ th

tk

G0(x− ξ, th − τ)dτ dγξ dγx ,

where the undamped kernel G0 is defined in (6), in such a way that the prob-
lematic issues described above are confined in the second term, whose time
integral can be evaluated analytically. The time integral of the first term is
instead performed numerically, using a modified Gaussian rule [36]. At last,
the outer integrals over Γ are numerically treated by suitable quadrature
schemes as in [29], to which the interested reader is referred. In particular,
we use 32 quadrature nodes for the space cell and from 32 to 128 quadra-
ture nodes for the time cell, depending on the accuracy we need to catch
the highly oscillatory behavior of the approximate solutions, as it will be
clear in the next Section.

Remark. At present, nothing have been done to optimize the computa-
tional costs, but the elapsed time for the longest simulation is not greater
than one hour on a standard personal computer. In this sense, a remark-
able computational saving could be achieved parallelizing the generation of
matrix blocks A(`), ` = 0, · · · , N∆t − 1: they are independent of each other
and therefore they could be computed simultaneously.
Further, the computational cost of the post-processing phase and of the
linear system (17) generation and solution are not strictly related. In fact,
while post-processing involves only double integrals with non singular ker-
nel as expressed in (4) and it linearly depends on the number of space-time
points at which we want to evaluate the solution of the original differen-
tial problem, the linear system computation is made heavy mainly by the
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evaluation of triple integrals (22) with their weak singularities.

5. Numerical results

In the following, we will present and discuss several numerical results
obtained, for 2D Dirichlet exterior problems, by energetic Galerkin BEM.
As already said in Section 2, problem (1)-(3) can model damping phenom-
ena in very different physics and engineering contexts. As a consequence,
velocity c and damping parameters P and D, often tuned with respect to
the value of c, may assume very different values in a range between 0 and
some thousands. But changing the value of the velocity results in rescaling
time-space domain and related discretization parameters, as done for the
energetic BEM in a previous paper [28]. Hence, here, we chose to show the
reliability of the proposed numerical method varying the damping coeffi-
cients in a suitably wide range, having fixed c = 1.
In the first benchmark, we consider the problem (1)-(3) with Γ =
{x = (x, 0) |x ∈ [−0.5, 0.5]} and the Dirichlet boundary datum

(24) g(x, t) = −H[t]f(t)x, where f(t) =


sin2(4π t) , if 0 ≤ t ≤ 1

8

1 , if t ≥ 1

8
,

taken from [29].
At first, we choose a uniform decomposition of Γ in 40 straight elements
(∆x = 0.025) and we set ∆t = 0.025. In Figure 1, we show the time history
of the solutions φ(x, t) on the straight element e10 and on the time interval
[0, 2], for P = 0 varying D = 0, 0.5, 1, 2, 5, 10, 20 on the top and for D = 0
varying P = 0, 0.1, 1, 10, 20 at bottom. Note the effects of increasing viscous
and material damping, which substantially change the aspect of the solu-
tion related to the classical wave equation, visible in the graphs for trivial
parameters.
During the turbulent phase, the BIE solutions have a peak in the time inter-
val [0,1/8] in accordance with the time evolution of Dirichlet datum. Then
the datum becomes constant, forcing the solution to be trivial until it re-
ceives solicitation by an endpoint of the boundary that behaves like a wave
source: on e10, the left-end side of the boundary influences the BIE solution
at t = 0.25 and then, at t = 0.75 the wave coming from the right-end side
arrives. . . Of course, the higher the viscous damping parameter D in Figure
1 (top), the more the reflected waves from the endpoints are damped, and
the above described phenomenon is negligible. On the contrary, the higher
the material damping parameter P in Figure 1 (bottom), the more the re-
flected waves from the endpoints are amplified, as in a bigger oscillation.
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Then, in order to observe longtime behavior of the solution and to numeri-

Figure 1. Time history of φ(x, t) on element e10, for P = 0 (top) and D = 0 (bottom).

cally check longtime stability of the energetic formulation (11), we choose a
uniform decomposition of Γ in 10 subintervals (∆x = 0.1) and enlarge the
observation time interval, fixing T = 60 and ∆t = 0.1. Since the Dirichlet
datum becomes independent of time, for P = 0 and D ≥ 0 we expect that
the BIE transient solution φ(x, t) on Γ tends to the stationary one φ∞(x)
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(Fig. 2), i.e. the solution of the BIE related to the following Dirichlet prob-
lem for the Laplace equation:

∆u∞(x) = 0, x ∈ R2 \ Γ
u∞(x) = −x, x ∈ Γ
u∞(x) = O(1), ‖x‖ → ∞

Looking at the graphs of the time history of ‖φ(·, t)− φ∞(·)‖L1(Γ), shown

Figure 2. BIE stationary solution φ∞(x) on Γ

in Figure 3, we observe the expected convergence. In particular, curves for
D > 0 have the same slope, while the fastest convergence is related to the
case of undamped wave equation, i.e. for D = 0. Note that peaks appear-
ing in Figure 3 are due to an intersection between transient and stationary
solutions.
The convergence of the transient solution to the stationary one can be
observed also outside the obstacle: once the unknown density over Γ is
obtained using energetic BEM, in the post-processing phase the represen-
tation formula (4) allows to evaluate the approximate solution around the
obstacle. In Figures 4-6 we show snapshots of the transient solution for
P = D = 0 around Γ, evaluated at t = 2, 4, 6, 8, 10, and the corresponding
stationary solution. After the wavefront has left the considered area, the
transient approximate solution is going to overlap the stationary one. In
Figure 7, time history of the difference in L2 norm between transient and
stationary solutions around the obstacle is presented, for P = D = 0.
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Figure 3. Convergence of damped BIE solution, for P = 0 and D ≥ 0

Figure 4. Snapshots of the transient solution u(x, t) for P = D = 0 around Γ, evaluated
at t = 2 and t = 4.

The same analysis for the post-processing phase has been done in the
case of P = 0, D = 1: results are presented in Figures 8-10 and in Figure 11.
Note that for active viscous damping coefficient, the wavefront leaving the
obstacle is almost negligible and the convergence to the stationary solution
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Figure 5. Snapshots of the transient solution for P = D = 0 around Γ, evaluated at
t = 6, 8.

Figure 6. Transient solution for P = D = 0 around Γ evaluated at t = 10 and stationary
one.

is slower than in the previous case, related to trivial damping coefficients.

Analogously, for D = 0 and P ≥ 0, we expect that the transient solution
φ(x, t) on Γ tends to the stationary one φ∞,k(x) (Fig. 12), i.e. the solutions
of the BIE related to the following Dirichlet problem for the Helmholtz
equation:

∆u∞,k(x) + k2u∞,k(x) = 0, x ∈ R2 \ Γ
u∞,k(x) = −x, x ∈ Γ

u∞,k(x) = O(‖x‖−1), ‖x‖ → ∞

with wave number k =
√
−P/c2.

Looking at the graphs of the time history of ‖φ(·, t)−φ∞,k(·)‖L1(Γ), for
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Figure 7. Time history of the difference in L2 norm between transient and stationary
solution around Γ, for P = D = 0 .

Figure 8. Snapshots of the transient solution for P = 0, D = 1 around Γ evaluated, in
t = 2, 4.

D = 0 and P = 0.1, 1, 10, 20, in Figure 13, we observe the expected conver-
gence, that becomes more oscillating for increasing values of parameter P ,
even if all the curves present the same global decay.

Also for both positive viscous and material damping coefficients, we
expect convergence to the related Helmholtz stationary BIE problem solu-
tion. In Figure 14 we show the case D = 0.1 and P = 0.1, 1, 10, 20, while
in Figure 15 we show the comparison of the convergence history for D = 0
and D = 0.1, fixing different values of P : the slower convergence appears
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Figure 9. Snapshots of the transient solution for P = 0, D = 1 around Γ, evaluated in
t = 6, 8.

Figure 10. Transient solution for P = 0, D = 1 around Γ evaluated in t = 10 and
stationary one.

for D = 0. Note that simulations related to Figure 15 are all performed in
underdamping configuration, while those in Figure 3 in overdamping con-
figuration.
In general, as well known, if P = D2 (critical damping) the physical model

reaches the steady state as quickly as possible without oscillating; otherwise,
in strictly connection with the two expressions defining the fundamental so-
lution written in (5), if P > D2 (underdamping) the decay combines with
oscillations; if P < D2 (overdamping) there is a decay to steady state with-
out oscillations.
This behavior can be better explained looking at Figure 16: the conver-
gence histories to the unique Helmholtz BIE solution for k =

√
−P = i 0.1

are plotted for different values of viscous damping D. When D = 0 and
D = 0.05 we are in underdamping configuration and the higher D, the less
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Figure 11. Time history of the difference in L2 norm between transient and stationary
solution around Γ, for P = 0, D = 1 .

Figure 12. Stationary solutions φ∞,k(x) on Γ, for different values of k.
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Figure 13. Convergence of damped BIE solution towards the related Helmholtz problem
stationary BIE solution, when D = 0 and P = 0.1, 1, 10, 20.

are the oscillations and the faster is the convergence to the steady state
solution (continuous coloured lines). For D = 0.1, when damping is critical,
we observe the fastest convergence without oscillation (black line). Then,
for growing D, we turn to the overdamping configuration and the higher
the values of D, the slower is the convergence to the equilibrium without
oscillations (dashed lines).
Further, in Figure 17, we give the same type of results for fixed D = 0.1,
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Figure 14. Convergence of damped BIE solution towards the related Helmholtz problem
stationary BIE solution, when D = 0.1 and P = 0.1, 1, 10, 20.

varying P , but here each transient solution converges to its own equilib-
rium. For growing P < D2 (overdamping), the higher the material damping
coefficient, the faster the convergence without oscillations (dashed lines).
When critical damping is reached for P = 0.01, we observe the fastest
convergence without oscillation (black line). Then, for growing P > D2

(underdamping), the decay combines with oscillations and the larger values
of material damping P the higher the frequency of oscillations (continuous
coloured lines).
Finally, Figure 18 shows that, when P = D2 (critical damping), the greater
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Figure 15. Comparison between convergence histories for D = 0 and D = 0.1, fixing
different values of P .

the dissipation, the faster the convergence towards the related equilibrium.
In that Figure the numerical accuracy threshold at 10−9 can be noticed,
too.

In the second benchmark, we consider the problem (1)-(3) with Γ ={
x ∈ R2|x = (cosβ, sinβ), β ∈ [0, π]

}
and the Dirichlet boundary datum,

taken from [29],

(25) g(β, t) = H[t]f(t) cos(β) ,

with f(·) given in (24). The velocity is still fixed as c = 1. We choose a

121

Unauthenticated
Download Date | 7/27/18 8:52 AM



A.Aimi et al.

Figure 16. Comparison between convergence histories for fixed P = 0.01, varying D.

Figure 17. Comparison between convergence histories for fixed D = 0.1, varying P .
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Figure 18. Comparison between convergence histories for different values of P = D2.

uniform decomposition of Γ in 40 straight elements (∆x = π/40) and we
set ∆t = 0.1. The analysis is carried out on the time interval [0, 10]. In
Figure 19, we show the time history of the solutions φ(x, t) on the straight
element e10 for different values of damping parameters P and D, while in
Figure 20 the approximate solutions on Γ at the final time instant of analysis
are plotted. Note that for P = 0, D = 0, 1 the transient BIE solutions tend
to the stationary solution of the BIE related to the corresponding Laplace
problem, while for P = 1, D = 0, 1 the transient BIE solutions tend to
the stationary solution of the BIE related to the corresponding Helmholtz
problem, as in the first benchmark involving a straight obstacle Γ.

6. Conclusions

In this paper we have considered the so-called energetic BEM for
the numerical solution of 2D damped wave propagation exterior problems
equipped with Dirichlet boundary condition. The method was already con-
sidered for the numerical solution of the undamped wave equation in sev-
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Figure 19. Time history of the solutions φ(x, t) on the straight element e10, for different
values of damping parameters P and D.

Figure 20. Approximate solutions on Γ at the final time instant of analysis T = 10, for
different values of damping parameters P and D.

eral space dimensions, revealing its accuracy and stability, also coupled
with FEM. The presented numerical results confirm that these properties
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are maintained in presence of dissipation terms in the model problem as
already highlighted in 1D simulations [17,27]. Ongoing research is focused
on the analysis of strong and hyper-singular kernels obtained by normal
derivation of the fundamental solution of the 2D damped wave operator
and on the treatment of Neumann boundary conditions.
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