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Abstract

Starting from a recently developed energetic space-time weak formulation of the Boundary Integral Equations related
to scalar wave propagation problems, in this paper we focus for the first time on the 2D elastodynamic extension of the
above wave propagation analysis. In particular, we consider elastodynamic scattering problems by open arcs, with vanishing
initial and Dirichlet boundary conditions and we assess the efficiency and accuracy of the proposed method, on the basis of
numerical results obtained for benchmark problems having available analytical solution.
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1. Introduction

Linear elastodynamic two-dimensional problems are ideally suited to successful applications of bound-
ary integral equation (BIE) approaches and to their discretizations into boundary elements methods
(BEM) (see [1], [2]). An excellent review of the application of the BIE formulations and BEMs to elastic
wave propagation problems can be found in [3]. Frequently claimed advantages over domain approaches
are the dimensionality reduction, the easy implicit enforcement of radiation conditions at infinity and the
achievable accuracy.
In principle, both the frequency-domain and time-domain BEM can be used for elastodynamic wave prop-
agation problems. The first boundary integral formulation for elastodinamics was published by Cruse and
Rizzo [4]. This formulation operates in Laplace domain with a subsequent inverse transformation to the
time domain to achieve results for the transient behavior. The corresponding formulation in Fourier
domain, i.e. frequency domain, was presented by Dominguez [5]. For recent development of frequency-
domain methods, see e.g. [6], [7]. However, since all numerical inversion formulas from frequency-domain
to time-domain depend on a proper choice of parameters, a direct evaluation in time-domain seems to be
preferable. Moreover, it is more natural to work in the real time-domain and observe the phenomenon as
it evolves.
Time-domain BIE formulations were developed more recently primarily by soil-structure interaction prob-
lems (see e.g. [8], [9], [10], [11]). Time-domain approaches can be further classified into time-stepping
methods and the space-time integral equation methods. The former are based on a time discretization of
the original initial-boundary value problem via an implicit scheme and on the use of BIEs to solve the
resulting elliptic problems for each time step; the latter start from the space-time fundamental solutions
of the differential operator at hand in order to construct BIEs via representation formulas and jump
relations.
The mathematical analysis of elastodynamic BIE techniques in both space and time is based on a varia-
tional method [12] which furnishes genuine convergence results, following the pioneering papers [13], [14]
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on space-time Galerkin BEMs for scalar wave propagation. The way to obtain this weak formulation and
to prove stability results may be summarized in the following steps: Laplace or Fourier transform in time
variable; uniform estimates with respect to complex frequencies of the corresponding Helmoltz problem;
application of the Paley-Wienner theorem and Parseval identity. The drawback of this method is that the
passage to complex frequencies leads to stability constants that grow exponentially in time ( [15], [16]).
Further, in this approach a challenge is represented by an adequate choice of the time-step size, in order
to avoid numerical instabilities. Another technique to be mentioned is the convolution quadrature method
for time discretizaton, developed in [17], [18], [19]. It provides a straightforward way to obtain a stable
time stepping scheme using the Laplace transform of the kernel functions.
In this paper we consider a Dirichlet problem for a temporally homogeneous two-dimensional elastody-
namic equation, reformulated as an indirect BIE; in particular we aim at extending to 2D elastodynamic
soft scattering problems a recently developed space-time weak formulation of the BIEs related to scalar
wave propagation phenomena. This weak formulation is called energetic, because it takes advantage of
some properties of the energy of the system ( [20], [21]). The Energetic BEM has been applied so far
to many models: interior and exterior 2D ( [21], [22], [23]) and 3D ( [24], [25]) scalar wave propagation
problems and, more recently, 2D exterior damped wave propagation problems ( [26], [27]). Obtained
numerical results are very interesting in comparison with other ones found in literature ( [28]).
The paper is organized as follows: in Section 2 and 3 the model problem and its energetic BIE weak
formulation are presented, respectively. Section 4 is devoted to subsequent energetic Galerkin BEM dis-
cretization. In Section 5 several numerical results are presented and discussed, in relation to benchmarks
having available analytical solution. Conclusions are summarized in the last Section.

2. Model problem

We analyze the Navier problem in a bounded time interval [0, T ] outside an open arc Γ ⊂ R2, equipped
by Dirichlet boundary conditions and homogeneous initial conditions. In acoustics, the exterior Dirichlet
problem defines the scattering of a plane wave at a soft obstacle [29], hence the model problem here taken
into account will be analogously referred to as elastodynamic soft scattering.
A coordinate system (x, t) is employed, where x = (x1, x2)> denotes the cartesian spatial coordinates
and t is the time. If Γ− and Γ+ denote the lower and upper faces of the arc Γ, respectively, n = (n1, n2)>

defines the normal unit vector to Γ oriented from Γ− to Γ+. The differential problem, in the unknown
displacement field u = (u1, u2)>, reads:

(λ+ µ)∇(∇ · u) + µ∆u + ρb = ρü x ∈ R2\Γ , t ∈ (0, T ](1)

u(x, 0) = u̇(x, 0) = 0 x ∈ R2\Γ(2)

u(x, t) = ū(x, t) (x, t) ∈ Σ := Γ× (0, T ](3)

where λ, µ > 0 are the so-called Lamé parameters, ρ > 0 is the mass density, b(x, t) is a given body-force
vector and ū(x, t) is the Dirichlet datum. Furthermore, upper dots indicate time differentiation.
Writing (1)-(3) by components, for i = 1, 2 one has:

2∑
h,k,l=1

∂

∂xk

(
Cklih

∂

∂xh

)
ul(x, t) + ρbi(x, t) = ρüi(x, t) x ∈ R2\Γ, t ∈ [0, T ](4)

ui(x, 0) = u̇i(x, 0) = 0 x ∈ R2\Γ(5)

ui(x, t) = ūi(x, t) (x, t) ∈ Σ .(6)

In (4), Cklih is the Hooke tensor, that depends only on the two independent Lamé elastic constants λ, µ
and on the Kronecker delta:

(7) Cklih = λδihδkl + µ(δikδhl + δilδhk) i, h, k, l = 1, 2
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and whose symmetry properties are summarized by

(8) Cklih = Cklhi = C lkih = Cihkl .

The traction vector is defined through this tensor as

(9) pi(x, t) :=
2∑

h,k,l=1

Cklih
∂uk
∂xl

(x, t)nh i = 1, 2 .

The displacement u may be decomposed into an irrotational (or dilatational) part uP and a rotational
(or equivoluminal) part uS, i.e.

u = uP + uS ,

naming uP primary (or pressure or compressional) and uS secondary (or shear or solenoidal) waves; the
propagation velocities of the pressure and shear waves in the medium are given, respectively, as

(10) c2
P = (λ+ 2µ)/ρ , c2

S = µ/ρ

and therefore cP > cS.

3. Fundamental solution and energetic BIE weak formulation

In order to approximate u(x, t) using a BEM technique, we have to obtain a boundary integral
reformulation of the problem (4) − (6). This can be done using classical arguments and the knowledge
of the fundamental solution of the two-dimensional differential operator at hand. The full-space Green’s
function is a second order tensor with components Gij(x, ξ; t, τ), i, j = 1, 2, that satisfies the Green’s
identity in relation to Navier operator in (4). Hence it is fundamental solution of the equations

2∑
h,k,l=1

∂

∂xh

(
Cklih

∂

∂xl

)
Gkj(x, ξ; t, τ) + ρbij(x, t) = ρ G̈ij(x, ξ; t, τ)

x, ξ ∈ R2, τ < t , i, j = 1, 2 ,

(11)

when applying the space-time point body-force

ρ bij(x, t) = δij δ(x− ξ)δ(t− τ) .

Since coefficients in (1) are independent of space and time, the Green’s function depends on the arguments
x, ξ, t, τ only through the differences t− τ , ri = xi − ξi, i = 1, 2 and r = ‖x− ξ‖2:

Gij(x, ξ; t, τ) =

1

2πρ

{
H[cP(t− τ)− r]

cP

[
2c2

P(t− τ)2 − r2√
c2

P(t− τ)2 − r2
· rirj
r4
− δij
r2
·
√
c2

P(t− τ)2 − r2

]

− H[cS(t− τ)− r]
cS

[
2c2

S(t− τ)2 − r2√
c2

S(t− τ)2 − r2
· rirj
r4
− δij
r2
· c2

S(t− τ)2√
c2

S(t− τ)2 − r2

]}
,

i, j = 1, 2

(12)

and it satisfies the space-time reciprocity relation

(13) Gij(x, ξ; t, τ) = Gji(ξ,x; t, τ) .

For the application of BEM, the starting point is an integral representation formula over Σ for the solu-
tion of the differential problem (1)− (3).
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In case of sole Dirichlet boundary conditions an indirect formulation, deduced from Somigliana reciprocity
identity, can be used:

for (x, t) ∈ (R2\Γ)× (0, T ] and i = 1, 2

ui(x, t) =
2∑
j=1

∫ t

0

∫
Γ
Gij(x, ξ; t, τ)φj(ξ, τ) dΓξdτ+

2∑
j=1

∫ t

0

∫
R2\Γ

Gij(x, ξ; t, τ)ρbj(ξ, τ) dΩξdτ

(14)

where φ = (φ1, φ2)> is an unknown vector defined over Σ and belonging to the same functional space of
p = (p1, p2)>.
In the following, null body-forces will be assumed, hence leading, with a limiting process for x tending
to the boundary, to the BIEs

(15) ui(x, t) =

2∑
j=1

∫ t

0

∫
Γ
Gij(x, ξ; t, τ)φj(ξ, τ) dΓξdτ (x, t) ∈ Σ , i = 1, 2 .

Now, introducing the space-time integral operators

Vij : L2([0, T ];H−
1
2 (Γ))→ H1([0, T ];H

1
2 (Γ))

[Vijφj ](x, t) :=

∫ t

0

∫
Γ
Gij(x, ξ; t, τ)φj(ξ, τ) dΓξdτ , i, j = 1, 2

(16)

the BIEs (15), can be written in the compact form

(17)
2∑
j=1

[Vijφj ](x, t) = ui(x, t), i = 1, 2

and using the boundary condition (3), we can write down a system of two BIEs in the boundary unknown
φ:

(18)

(
V11 V12

V21 V22

)(
φ1(x, t)
φ2(x, t)

)
=

(
u1(x, t)
u2(x, t)

)
.

At this stage, we remark that the solution of (1)− (3) with null body-forces satisfies the following energy
identity

E(u, T ) :=
1

2

2∑
i=1

∫
R2\Γ

[
ρ u̇2

i (x, T ) +
2∑

h=1

2∑
k,l=1

Cklih
∂ui
∂xh

(x, T )
∂uk
∂xl

(x, T )
]
dx

=
2∑
i=1

∫
Γ

∫ T

0
u̇i(x, t)φi(x, t)dt dΓx,

(19)

which can be obtained by multiplying (4) by u̇i(x, t), using the symmetry properties in (8), integrating
over (R2\Γ) × [0, T ], then by parts in space variables and summing over index i. Hence, taking into
account the components in (17), the energetic weak formulation of the system (18) is defined as follows:

find φi ∈ L2([0, T ];H−
1
2 (Γ)), such that

(20)

2∑
j=1

< ˙[Vijφj ], ψi >L2(Σ)=< u̇i, ψi >L2(Σ) , i = 1, 2
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where ψi(x, t) are suitable test functions, belonging to the same functional space of φi(x, t), (see also [21],
where the energetic weak formulation was introduced for scalar Dirichlet wave propagation problems).
In particular equations in (18) are differentiated with respect to time and projected by means of L2(Σ)
scalar product. Note that the involved scalar products are represented by a space-time integral hence we
have to deal with a double integration in time variables and a double integration in space variables.

Remark. The energy E(u, T ) can be also written in the compact form:

(21) E(u, T ) =
1

2

∫
R2\Γ

[
ρ‖u̇‖22 + µ‖∇u‖2F + (λ+ µ)(∇ · u)2

]
(x, t)dx

where ‖ · ‖F indicates the Frobenius norm, which explicitly shows its positivity.

4. Galerkin BEM discretization

For time discretization we consider a uniform decomposition of the time interval [0, T ] with time step
∆t = T/N∆t, N∆t ∈ N+, generated by the N∆t+1 time-knots: tn = n∆t, n = 0, · · · , N∆t , and we choose
piecewise constant shape functions for the temporal approximation of φi(x, t)

(22) vn(t) := H[t− tn]−H[t− tn+1] .

For the space discretization we consider a boundary mesh T = {e1, . . . , eM} on Γ constituted by M
segments such that length(ei) ≤ ∆x, ei ∩ ej = ∅ if i 6= j and ∪Mi=1ēi = Γ̄ (if the obstacle is not piece-wise
linear the union of ēi will give a suitable approximation of Γ). Having defined Pd the space of algebraic
polynomials of degree d on the element ei ∈ T , we consider the space of piecewise polynomial functions

(23) X−1,∆x := {w ∈ L2(Γ) | w|ei ∈ Pd , ∀ ei ∈ T } .

Hence, denoted by M∆x the number of degrees of freedom on Γ and introduced the standard piecewise
polynomial boundary element basis functions wm(x), m = 1, · · · ,M∆x, in X−1,∆x, the components of the
approximate solution of (20) will be expressed as

(24) φi(x, t) ∼= φ̃i(x, t) :=

N∆t−1∑
n=0

M∆x∑
m=1

αinmwm(x)vn(t) .

and the test functions will be replaced by

ψi(x, t) = wm̃(x)vñ(t) , m̃ = 1, · · · ,M∆x , ñ = 0, · · · , N∆t − 1 .

The Galerkin BEM discretization coming from energetic weak formulation (20) produces the linear system

(25) Eα = β,

where matrix E has a block lower triangular Toeplitz structure, since its elements depend on the difference
tñ − tn and in particular they vanish if tñ ≤ tn. Each block has dimension 2M∆x. If we denote by E(`)

the block obtained when tñ − tn = (`+ 1)∆t, ` = 0, . . . , N∆t − 1, the linear system can be written as

(26)


E(0) 0 0 . . . 0

E(1) E(0) 0 . . . 0

E(2) E(1) E(0) . . . 0
...

...
...

. . .
...

E(N∆t−1) E(N∆t−2) E(N∆t−3) . . . E(0)

 ·


α(0)

α(1)

α(2)

...

α(N∆t−1)

 =


β(0)

β(1)

β(2)

...

β(N∆t−1)
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where the unknowns and rhs entries are organized as follows

α(`) =
(
α1
`1, · · · , α1

`M∆x
, α2

`1, · · · , α2
`M∆x

)>
,

β(`) =
(
β1
`1, · · · , β1

`M∆x
, β2
`1, · · · , β2

`M∆x

)>
.

(27)

The solution of (26) is obtained by a block forward substitution, i.e. at every time instant t` = (`+ 1)∆t,
` = 0, · · · , N∆t − 1, one computes

(28) z(`) = β(`) −
∑̀
j=1

E(j)α(`−j)

and then solves the reduced linear system

(29) E(0)α(`) = z(`) .

Procedure (28) − (29) is a time-marching technique, where the only matrix to be inverted is the non-
singular block E(0); therefore the LU factorization needs to be performed only once and stored. Then,
at each time step, the solution of (29) requires only a forward and a backward substitution phases. All
the other blocks E(`) are used to update at every time step the right-hand side. Of course, due to the
whole matrix E structure, one can construct and store only blocks E(0), · · · ,E(N∆t−1) with a considerable
reduction in computational cost and memory requirement.

The matrix entries in the E(`)-block are

< ˙[Vij wm vn], wm̃ vñ >L2(Σ)=∫ T

0

∫
Γ
wm̃(x) vñ(t)

∂

∂t

(∫ t

0

∫
Γ
Gij(x, ξ; t, τ)wm(ξ) vn(τ)dΓξdτ

)
dΓxdt,

i, j = 1, 2 ; ñ, n = 0, · · · , N∆t − 1 ; m̃,m = 1, · · · ,M∆x .

(30)

Remembering that ri := xi − ξi, i = 1, 2 and defining ∆ñ+h,n+k := tñ+h − tn+k, after a double analytic
integration in the time variables, we have

< ˙[Vij wm vn], wm̃ vñ >L2(Σ)=

−
1∑

h,k=0

(−1)h+k

2πρ

∫
Γ
wm̃(x)

∫
Γ
wm(ξ)Vij(r; ∆ñ+h,n+k)dΓξ dΓx

(31)

where

Vij(r; ∆ñ+h,n+k) :=
(rirj
r4
− δij

2r2

)
[H[cP∆ñ+h,n+k − r]

c2
P

ϕP(r; ∆ñ+h,n+k)−
H[cS∆ñ+h,n+k − r]

c2
S

ϕS(r; ∆ñ+h,n+k)
]
+

δij
2

[H[cP∆ñ+h,n+k − r]
c2

P

ϕ̃P(r; ∆ñ+h,n+k) +
H[cS∆ñ+h,n+k − r]

c2
S

ϕ̃S(r; ∆ñ+h,n+k)
](32)

having set

(33)
ϕγ(r; ∆ñ+h,n+k) := cγ∆ñ+h,n+k

√
c2
γ∆2

ñ+h,n+k − r2 ,

ϕ̃γ(r; ∆ñ+h,n+k) := log
(
cγ∆ñ+h,n+k +

√
c2
γ∆2

ñ+h,n+k − r2
)
− log r
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in which γ = P, S. In (32), the Heaviside functions represent the wave front propagation and their contri-
bution is 0 or 1.
If r < cS∆ñ+h,n+k < cP∆ñ+h,n+k, then (32) reduces to

Vij(r; ∆ñ+h,n+k) :=

c2
P − c2

S

cPcS

(rirj
r2
− δij

2

) ∆ñ+h,n+k

cP

√
c2

S∆2
ñ+h,n+k − r2 + cS

√
c2

P∆2
ñ+h,n+k − r2

−

c2
P + c2

S

c2
Pc

2
S

δij
2

log r +
δij
2

[ 1

c2
P

log
(
cP∆ñ+h,n+k +

√
c2

P∆2
ñ+h,n+k − r2

)
+

1

c2
S

log
(
cS∆ñ+h,n+k +

√
c2

S∆2
ñ+h,n+k − r2

)]
(34)

and we observe a space singularity of type O(log r) as r → 0, which is typical of weakly singular kernels
related to 2D elliptic problems. The adopted quadrature strategy is a (not trivial) extension of the
procedure used in [21] for Energetic BEM applied to scalar wave propagation problems.

For what concerns the overall computational cost of the Energetic BEM, it is due to three phases: (i)
construction of E(`) blocks; (ii) numerical solution of linear systems (29); (iii) post-processing evaluation
of displacements by representation formula (14), once the unknown φ is recovered.
The first step is the heaviest, since it involves the evaluation of double boundary integrals (31) with the
suitable quadrature schemes just cited. Anyway, since matrices E(`) are independent of each other, this
phase can be speeded up using concurrent processors doing blocks evaluation in parallel. The second
step can be fastened using a FFT-based algorithm as described and analyzed in [27]. The last phase has
computational cost directly proportional to the number of space-time points (x, t) ∈ R2\Γ × (0, T ] where
one needs to evaluate displacements field. In particular, for the considered model problem, having set
∆t,n+k := t− tn+k, one has to compute the following expressions, for i = 1, 2:

(35) ui(x, t) =
2∑
j=1

N∆t−1∑
n=0

M∆x∑
m=1

1∑
k=0

(−1)k

2πρ
αjnm

∫
Γ
Vij(r; ∆t,n+k)wm(ξ)dΓξ

using standard Gauss-Legendre quadrature rule for the evaluation of the non-singular boundary integrals.

Remark. The marching-on-time scheme is implicit and unconditionally stable, as proved for scalar
problems in [30], [31], [32] in the more general framework of Energetic BEM-FEM coupling.

5. Numerical results

In this Section we present several numerical results related to benchmark problems with available
reference analytical solution.
At first, we fix cS = cP, i.e. we consider an academic test having no physical meaning (see (10)) with the
aim of reducing the elastodynamic BIE system (18) to two uncoupled scalar BIEs related to the vector
wave propagation problem

(36) µ∆u− ρü = 0

in order to check the vectorial extension of Energetic BEM w.r.t. its scalar version. In fact, kernels (12)
assume the following expression

(37) Gij(x, ξ; t, τ) =
δij

2πρ cS

H[cS(t− τ)− r]√
c2

S(t− τ)2 − r2
, i, j = 1, 2
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which, for i = j, represents the two-dimensional fundamental solution of the scalar wave operator. In this
framework, we consider a straight obstacle

(38) Γ = {(x1, 0) |x1 ∈ [−0.5, 0.5]}

and we fix cS = cP = 1 and ρ = 1. The assigned Dirichlet boundary condition is

(39) ūi(x1, t) = H[t] f(t)x1 , i = 1, 2

where

f(t) :=
{ sin2(4π t) if t ∈ [0, 1/8]

1 if t ≥ 1/8
.

Since the Dirichlet datum becomes independent of time, for t ≥ 1/8, we expect that each component
φi(x1, t) of the approximate transient BIEs system solution will tend to the BIE solution φ∞ related to
the stationary Laplace problem defined in R2 \ Γ and equipped by Dirichlet datum ū(x1) = x1. This
reference static solution is analytically known and it reads

φ∞(x1) =
2x1√

1/4− x2
1

.

In Figure 1 we show the time history of both the components of the energetic BIEs solution at the point
of Γ with x1 = 0.25 and on the time interval [0, 2], for different values of the discretization parameters,
having chosen piece-wise constant space-time basis functions. Let us note that when we refine ∆x and
∆t, the energetic solution is better described in the initial temporal phase, but both the simulations tend
to the same constant value which approximates φ∞(0.25). The peak is due to the growing phase of the
Dirichlet datum, then the considered boundary point is solicited again at t = 0.25 by the wave generated
at the right endpoint of Γ travelling with unitary velocity.
In Figure 2, the reader can observe results related to doubled velocities and obtained by Energetic BEM

Figure 1. φi(0.25, t), i = 1, 2 evaluated by Energetic BEM using different discretization parameters, for cS = cP = 1.

fixing ∆x = 0.05 and ∆t = 0.025. The peak time and height are halved and the solicitation from the
right endpoint comes at t = 0.125.

Now, let us consider the same straight obstacle, but different primary and secondary velocities. In this
case, the elastodynamic BIEs system can be still decoupled, because in the Gij kernels (12) we can set

189

Unauthentifiziert   | Heruntergeladen  10.02.20 06:00   UTC



A.Aimi et al.

Figure 2. φi(0.25, t), i = 1, 2 evaluated by Energetic BEM, for cS = cP = 2.

r2 = 0. Further, if we assign the Dirichlet datum (39), we expect a transient solution converging to the
solution φ∞ of the elastostatic BIE with Dirichlet datum ūi(x1) = x1, i = 1, 2, which is analytically
known and reads

φi,∞(x1) =
2 c2

P

c2
S + c2

P

2x1√
1/4− x2

1

, i = 1, 2 .

In Figure 3, the vertical component φ2(0.25, t) of the transient solution is shown on the time interval
[0, 2], for different values of the discretization parameters, having fixed cS = 1 and cP = 2 and piece-wise
constant space-time basis functions. When we choose ∆x and ∆t in such a way that their ratio is equal
to cP we observe a better description of the initial evolution of the approximate solution than the choice
∆x/∆t = cS, but in any case the asymptotic behavior of the solution is perfectly kept by all Energetic
BEM simulations. In Figure 4, we display the components φi(0.25, t), i = 1, 2 of the elastodynamic BIEs
solution obtained for ∆x = 0.025, ∆t = 0.0125. While at the beginning of the simulation, the behavior
of the graphs is different, both curves tend to the same limit value, given by φi,∞(0.25).
At last, Figure 5 shows, on the time interval [0, 10], the time history of the relative gap evaluated in L2(Γ)
norm between the vertical components of analytical stationary and transient BIEs solutions, using for the
latter Energetic BEM applied with different discretization parameters, in such a way that ∆x/∆t = cP.
The smaller the parameters, the better the limit error.

For a quantitative evaluation of error reduction, we report in Table 1 the absolute value of the
difference between transient approximate solution and limit stationary one evaluated in different points
of Γ and for different time instants. Let us note that the uniform decomposition employed on Γ is not
able to completely catch the weak singularity of the solution at the obstacle endpoints, and this is the
reason for the behavior of the error, which anyway around the midpoint of Γ and for sufficiently high
time decades linearly w.r.t. the discretization parameters. Non-uniform algebraically or geometrically
graded meshes, defined in [33] and already used in [34] for Galerkin BEM applied to elliptic problems,
are optimal for this kind of BIE solutions behavior and their inclusion into the Energetic BEM code is
scheduled as next work.

Figures 6 and 7 show results obtained fixing cS = 1, cP = 4 and, as we can see, they are similar to those
shown in Figures 3 and 4.
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Figure 3. Vertical component φ2(0.25, t) of the transient solution on the time interval [0, 2], for different values of the
discretization parameters, for cS = 1, cP = 2.

Finally, in Figure 8 we show φi(x1, 2) compared to φi,∞(x1), for i = 1, 2: overlapping is already perfectly
evident at T = 2, except at the endpoints of Γ where the analytical solution of the elastostatic problem
presents a high gradient.

At last, on the same domain of the previous test problems and for cS = 1, cP = 2, we consider
a Dirichlet datum given by ū1(·, t) = 0 and ū2(·, t) shown in Figure 9, and we fix the observation time
interval [0, 10]. As uniform time and space discretization steps we use ∆t = 0.05 and ∆x = 0.1 respectively
and we adopt, as usual, piece-wise constant space-time shape and test functions.
In Figure 10 we show the time history of the density φ2 obtained in the midpoint of Γ. As one can note,

it has the same form of the derivative of the boundary datum and hence it vanishes for long times.
In Figure 11 the time history of the vertical displacement u2(x, t) in x = (0, 3) (left) and x = (0, 5) (right)
is plotted: the primary perturbation, traveling with cP = 2, reaches the observation point at time instant
t = 0.5(x2 +1), while the tail traveling with cS = 1 produces a much smaller perturbation at t = x2 +0.5.
The greater the distance from Γ, the smaller both the solicitations. The horizontal displacement u1 is
negligible and it is not shown.
In Figure 12 we present a section of the vertical component u2(x, t) of the solution of the original

differential problem (1)-(3), along the segment x1 = 0 and 0 < x2 < 10, at time instants t = 2, 3, 4:
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Figure 4. φi(0.25, t), i = 1, 2 evaluated by Energetic BEM, for cS = 1, cP = 2.

Figure 5. Time history of relative error in L2(Γ) norm, for different values of discretization parameters and for cS = 1, cP =
2.

as one can observe, both the perturbations, traveling away from the boundary Γ with different speeds
cP = 2, cS = 1, assume the same structure of the Dirichlet boundary datum but with diminishing intensity
for growing time. The higher the time, the greater the space distance between the two traveling waves.

6. Conclusions

In this paper, for the first time, Energetic BEM is applied to two-dimensional exterior elastodynamic
problems, equipped by Dirichlet boundary condition. The extension of the method from 2D scalar wave
propagation, even if not straightforward, has revealed to retain the optimal properties theoretically proved
and numerically observed for the simpler model problem. Ongoing research is focused on the Energetic
BEM treatment of elastodynamic space-time double layer potential and hypersingular boundary integral
operator.
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Figure 6. Vertical component φ2(0.25, t) of the transient solution on the time interval [0, 2], for different values of the
discretization parameters, for cS = 1, cP = 4.

Figure 7. φi(0.25, t), i = 1, 2 evaluated by Energetic BEM, for cS = 1, cP = 4.
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Table 1. Absolute errors |φ2(x1, t)− φ2,∞(x1)|.

∆x = 0.05,∆t = 0.025

t = 4 t = 6 t = 8 t = 10

x1 = 0 6.3868 10−4 1.1154 10−3 1.2774 10−3 1.3505 10−3

x1 = 0.1 3.6059 10−3 6.0683 10−3 6.9043 10−3 7.2815 10−3

x1 = 0.2 8.2633 10−3 1.3082 10−2 1.4717 10−2 1.5454 10−2

x1 = 0.3 1.5890 10−3 9.7574 10−3 1.2523 10−2 1.3770 10−2

x1 = 0.4 7.8530 10−1 7.7219 10−1 7.6776 10−1 7.6576 10−1

∆x = 0.025,∆t = 0.0125

t = 4 t = 6 t = 8 t = 10

x1 = 0 3.8036 10−6 2.3543 10−4 3.1679 10−4 3.5353 10−4

x1 = 0.1 1.3757 10−4 2.3486 10−3 3.1004 10−3 3.4398 10−3

x1 = 0.2 1.3562 10−3 5.8631 10−3 7.3941 10−3 8.0852 10−3

x1 = 0.3 6.4774 10−3 1.4198 10−2 1.6817 10−2 1.7998 10−2

x1 = 0.4 4.4951 10−3 1.8608 10−2 2.3385 10−2 2.5539 10−2

∆x = 0.0125,∆t = 0.00625

t = 4 t = 6 t = 8 t = 10

x1 = 0 1.0083 10−4 1.8926 10−5 5.9689 10−5 7.8103 10−5

x1 = 0.1 1.6715 10−3 4.1334 10−4 1.1228 10−3 1.4432 10−3

x1 = 0.2 2.9109 10−3 1.4396 10−3 2.9187 10−3 3.5865 10−3

x1 = 0.3 2.6140 10−3 4.8590 10−3 7.3962 10−3 8.5410 10−3

x1 = 0.4 8.0229 10−3 2.1557 10−2 2.6143 10−2 2.8211 10−2

Figure 8. φi(x1, 2) compared to φi,∞(x1), i = 1, 2, for cS = 1, cP = 4.
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ū2(·, t) =



t− 1
2 , t ∈ [0.5, 0.6]

−30 t+19
10 , t ∈ [0.6, 0.7]

40 t−30
10 , t ∈ [0.7, 0.8]

−30 t+26
10 , t ∈ [0.8, 0.9]

t− 1 , t ∈ [0.9, 1]

0 elsewhere

Figure 9. Dirichlet boundary condition.

Figure 10. Density φ2(0, t), obtained for ∆t = 0.05 and ∆x = 0.1.

Figure 11. Vertical displacement u2(x, t) in x = (0, 3) (left) and x = (0, 5) (right), obtained for ∆t = 0.05 and ∆x = 0.1.
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Figure 12. Section of u2(x, t) along x1 = 0, 0 < x2 < 10, at time instants t = 2, 3, 4.
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