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Abstract

Background: The advent of high-throughput experimental techniques paved the way to genome-wide
computational analysis and predictive annotation studies. When considering the joint annotation of a large set of
related entities, like all proteins of a certain genome, many candidate annotations could be inconsistent, or very
unlikely, given the existing knowledge. A sound predictive framework capable of accounting for this type of
constraints in making predictions could substantially contribute to the quality of machine-generated annotations at a
genomic scale.

Results: We present OCELOT, a predictive pipeline which simultaneously addresses functional and interaction
annotation of all proteins of a given genome. The system combines sequence-based predictors for functional and
protein-protein interaction (PPI) prediction with a consistency layer enforcing (soft) constraints as fuzzy logic rules. The
enforced rules represent the available prior knowledge about the classification task, including taxonomic constraints
over each GO hierarchy (e.g. a protein labeled with a GO term should also be labeled with all ancestor terms) as well
as rules combining interaction and function prediction. An extensive experimental evaluation on the Yeast genome
shows that the integration of prior knowledge via rules substantially improves the quality of the predictions. The
system largely outperforms GoFDR, the only high-ranking system at the last CAFA challenge with a readily available
implementation, when GoFDR is given access to intra-genome information only (as OCELOT), and has comparable or
better results (depending on the hierarchy and performance measure) when GoFDR is allowed to use information
from other genomes. Our system also compares favorably to recent methods based on deep learning.
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Background
The advent of high-throughput experimental procedures
comes both as an opportunity and as a challenge for com-
putational approaches. On one hand, it allows to rely on
unprecedented amounts of experimental data, such as
sequential data at a genomic and meta-genomic scale as
provided by NGS experiments. On the other hand, it calls
for a change of scale for predictive approaches, from the
focus on the analysis of individual biological sequences to
the development of models characterizing the behavior of
all sequences in a given genome or metagenome [1].
This level of analysis requires to develop models capa-

ble of jointly performing predictions on multiple entities,
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accounting for the relationships between these entities in
order to provide predictions which are consistent with the
existing knowledge.
In this paper we focus on two tightly connected aspects

of protein behavior which are crucial in determining cell
life, namely protein function and protein-protein inter-
action (PPI). By protein function we refer to the charac-
terization of protein behavior as formalized by the Gene
Ontology Consortium (GO) [2]. GO organizes the func-
tion of gene products into three hierarchies considering
their molecular functions (MF), cellular compartments
(CC) and biological processes (BP) respectively. Protein
function prediction is one of the most popular bioinfor-
matics tasks, as exemplified by the CAFA series [3] of
protein function annotation assessments. Proteins mostly
function through their interactions with other proteins,
and predicting these interactions is thus at the heart of
functional genomics [4]. Furthermore, PPI play crucial
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roles both in the mechanisms of disease [5] and the design
of new drugs [6].
These predictive tasks are highly relational. GO hier-

archies naturally enforce a set of taxonomic constraints
between predictions. For instance, if a protein is anno-
tated with a GO term it should also be annotated with
the parents of this term (GO hierarchies are encoded as
directed acyclic graphs) as well as with its ancestors, all
the way up to the root of the hierarchy. Protein-protein
interaction predictions provide additional sources of con-
straints, as for instance two interacting proteins are more
likely to be involved in the same process, while two pro-
teins located in different cellular compartments are less
likely to interact.
Our predictive model is based on Semantic Based Regu-

larization (SBR) [7], a statistical relational learning frame-
work combining statistical learners with fuzzy-logic rules.
For each GO term, a binary classifier is trained to pre-
dict whether a protein should be labeled with that term.
A pairwise classifier is trained to predict whether pairs of
proteins interact or not. All classifiers are implemented
as kernel machines with kernels defined over multiple
sources of information such as gene co-expression,
sequence conservation profiles and protein domains (see
Dataset construction for the details). Consistency among
predictions is enforced by a set of fuzzy-logic rules relating
terms in the hierarchies and terms with PPI predictions
(see Methods for details).
An extensive experimental evaluation over the Yeast

genome shows the potential of the approach. Yeast was
chosen as a reference genome because of the large
amount of functional and interaction annotation available.
Our results show that both hierarchical and term-
interaction rules contribute in increasing prediction qual-
ity in all GO hierarchies, especially for the lower levels
where less training examples are available. PPI predic-
tions provide an additional boost in function prediction
performance. The converse is not true, as function pre-
dictions do not contribute to improve PPI prediction
quality. This is an expected result, as the latter task is
comparatively simpler, and information tends to propa-
gate from simpler tasks to more complex ones. When
compared to alternative approaches, our model substan-
tially improves over GoFDR [8], the only high-ranking
system at the latest CAFA challenge [3] for which an
implementation was readily available, when GoFDR is
allowed to access Yeast proteins only (as our method
does), and has comparable or better results (depend-
ing on the hierarchy and performance measure) when
GoFDR is given full access to the UNIREF90 database
of proteins. In addition, our system produces compara-
ble results to DeepGO [9], a deep learning-based method
that relies on the true PPI network to produce its
predictions.

The paper is structured as follows. In the next Section
we position our contribution in the wider context of
protein function prediction. We describe our predic-
tion pipeline and constraints in “Methods” section,
while “Results” section focuses on our experimental
evaluation. We conclude with some final remarks in
“Conclusion” section.

Related work
Protein function prediction methods can be roughly
grouped in two classes. Sequence-basedmethods perform
annotation transfer by leveraging sequence similarity only.
They follow a two-step scheme: first candidate homo-
logues are identified using using tools like BLAST [10]
or PSI-BLAST [11], then the annotations of the hits are
transferred to the target based on various strategies. The
underlying assumption is that homologues tend to share
the same functions. Indeed, this is often the case for
sequences with at least 60% similarity [12]. Targets that
do not satisfy this condition are more challenging (they
are referred to as “difficult targets” in CAFA parlance),
and require finer-grained approaches. Recent approaches
leverage deep learning architectures for analyzing the
sequence data (e.g. [9]). Some sequence-based methods
additionally rely on sequence features such as (inferred)
domains, motifs, or conserved residues, see e.g. [8].
Data-based methods instead gather functional hints

from heterogeneous data sources, including physical
interactions [13, 14], co-expression patterns [15, 16], and
genetic context [17, 18], among others. Please see [3, 19]
for a list of frequently used sources. In this context, the key
issue is how to appropriately integrate the sources while
taking into account differences in format and reliability.
The integration step is often carried out using statistical,
probabilistic or machine learning tools.
Methods in both categories often do not enforce con-

sistency among predictions. Those that do typically rely
on a post-processing step to prune inconsistent anno-
tations. More principled methods account for relations
amongGO terms directly in the training procedure, allow-
ing annotation information to propagate across related
terms. For instance, GOstruct [18, 20] employs structured
output support vector machines (SVM) [21] to jointly pre-
dict all functional annotations of any target protein in a
consistent manner. OCELOT follows the same principles,
but relies on Semantic Based Regularization, a differ-
ent, sound structured-output method. SBR has previously
been applied to multi-level PPI prediction [22]. Contrary
to structured-output SVMs, SBR can be easily adapted
to different prediction tasks by changing the consistency
rules, as described in Methods. Further, SBR does not
require to solve an optimization problem explicitly (as
is the case for loss-augmented inference in structured-
output SVMs [21]) and can scale to larger tasks.
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We note in passing that self-consistency alone is not
enough to guarantee state-of-the-art results, as shown by
the GOstruct results in the latest CAFA challenge [3].
More generally, despite the growing amount of “omics”
data, which should favor data-based methods, sequence-
based approaches proved to be hard to beat in practice
[23], with some of them ranking among the top meth-
ods in the CAFA 2 competition [3]. For instance, GoFDR
[8], an advanced sequence-based method, demonstrated
excellent results in several categories, including eukary-
otic genomes. Due to its excellent performance and imme-
diate availability, we use GoFDR as the prime competitor
in our experiments.
In addition, given the recent success of deep learning-

based methods, we consider also the DeepGO approach
of Kulmanov et al. [9]. This approach applies a one-
dimensional convolutional neural network (with max-
pooling layers) to the sequence data in order to produce
a hidden representation of the protein. Then, PPI infor-
mation is also converted into a hidden representation
via knowledge graph embeddings. These representations
are fed into a neural network, whose structure mimics
the target GO ontology. DeepGO has shown considerable
performance, but, in contrast to our method, it requires
interaction data to be available.

Methods
Overview of the prediction pipeline
Genome-wide prediction of protein function and inter-
action involves inferring the annotations of all pro-
teins in a genome. OCELOT approaches this problem by

decomposing it into simpler prediction tasks, and exploits
prior biological knowledge to reconcile the resulting pre-
dictions. OCELOT instantiates one task for every can-
didate GO term, i.e., deciding whether a given protein
should be annotated with that term, plus a separate task
for deciding whether a given protein pair interacts. The
overall, genome-wide annotations are obtained by impos-
ing consistency across the predictions of all tasks. See
Fig. 1 for a simplified depiction of our prediction pipeline.
In order to model the genome-wide prediction task,

OCELOT employs Semantic Based Regularization (SBR)
[7, 24], a state-of-the-art Statistical Relational Learning
framework specifically designed to reason and learn with
constraints and correlations among related prediction
tasks. Entities, tasks and relations are encoded in SBR
using First-Order Logic (FOL). At the logical level, pro-
teins and terms are represented as constants p, p′, f , f ′, etc,
while annotations are modelled as predicates. OCELOT
uses several predicates: a predicate Funf (p) for each can-
didate term f, indicating whether protein p performs func-
tion f, and a separate predicate Bound(p, p′), encoding
whether proteins p and p′ are physically bound. The truth
value of a predicate is either fixed, in case the correspond-
ing annotation is already known, or automatically imputed
by SBR. In the latter case, the predicate is said to be a “tar-
get” predicate, and the truth value is predicted by a kernel
machine [25, 26] associated to the predicate itself.
The kernel function, which lies at the core of kernel

machines, measures the similarity between objects based
on their representations. In our setting, a protein can be
represented by the sequence of its residues, as well as by

Fig. 1 Depiction of the Ocelot decision making process. Above: predicted protein–protein interaction network, circles are proteins and lines
represent physical interactions. Below: GO taxonomy, boxes are terms and arrows are IsA relations. Predicted annotations for proteins p1 and p2
(black): p1 is annotated with terms f1, f4, f5 and p2 with f2, f4. The functional predictions are driven by the similarity between p1 and p2, and by
consistency with respect to the GO taxonomy (e.g. f1 entails either f3 or f4, f2 entails f4, etc.). The interaction predictions are driven by similarity
between protein pairs (i.e. (p1, p2) against all other pairs) and are mutually constrained by the functional ones. For instance, since p1 and p2 do
interact, OCELOT aims at predicting at least one shared term at each level of the GO, e.g. f4 at the middle level. These constraints are not hard, and
can be violated if doing so provides a better joint prediction. As an example, p1 is annotated with f1 and p2 with f2. Please see the text for the details
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information about its amino acid composition or phylo-
genetic profile: having similar sequences, composition or
profiles increases the similarity between proteins. Given a
kernel and an object x, a kernel machine is a function that
predicts some target property of x based on its similarity
to other objects for which that property is known. More
formally, the function is:

f (x) = ∑
i wiK(x, xi)

This summation computes how strongly the property is
believed to hold for x (if the sum is positive) or not (other-
wise), and is often referred to as “confidence” or “margin”.
For instance, a kernel machine could predict whether a
protein x resides in the nucleus or not. In this case, being
similar to a protein xi residing in the nucleus (positive wi)
drives the prediction toward a positive answer, while being
similar to a protein xi residing elsewhere (negative wi) has
the opposite effect. Note that designing an appropriate
kernel is critical for predictive performance.
In SBR each target predicate is implemented as a ker-

nel machine. The truth value of a predicate—applied to an
uncharacterized protein— is predicted by the associated
kernel machine. Given a set of kernel machines (or predi-
cates), SBR employs FOL rules to mutually constrain their
predictions. It does so by first translating the FOL rules
into continuous constraints using T-norms, a procedure
discussedmore thoroughly in “Semantic based regulariza-
tion (SBR)” section. Roughly, these constraints combine
the confidences (margins) of the predicates appearing in
the FOL rule into an overall confidence in the satisfaction
of the rule.
In order to make the predictions of different tasks con-

sistent with the rules, SBR computes a joint truth value
assignment that maximizes the sum of 1) the confidences
of the individual predicates, and 2) the confidence in the
satisfaction of the rules. Informally, the optimal assign-
ment y∗ is obtained by solving the following optimization
problem:

y∗ =argmaxy consist(y, kernel machines)

+ consist(y, rules)
The two terms represent the consistency of the inferred
truth values and with respect to the predictions given by
the kernel machines, and with respect to the rules derived
from the FOL background knowledge, respectively. Notice
that in this optimization problem, the rules act as soft con-
straints, encouraging assignments satisfying many rules
with high confidence.
As for most other complex Statistical-Relational Learn-

ing models [27], this inference problem is not convex,
which implies that we are restricted to finding local
optima. SBR exploits a clever two-stage procedure to
improve the quality of the obtained local optimum. In a
first step, SBR disables the constraints (by ignoring the

second term of the equation above), thus obtaining indi-
vidual predictions that fit the supervised data. This infer-
ence step is convex and can be solved efficiently to global
optimality. In a second step, the obtained predictions are
used as a starting point for the full inference procedure,
where the constraints are turned back on. Empirically,
this strategy was shown to achieve high-quality solutions,
while being less computationally expensive than other
non-convex optimization techniques [7].
SBR can be used both in inductive and transductive

mode. In the latter case, both training and test examples
are provided during training, with labels for the training
examples only. In this way, test examples can contribute
via the rule consistency term even if their labels are not
known. Semi-supervised approaches are known to boost
predictive performance [28], and fit the genome-wide pre-
diction setting, where the full set of target proteins is
available beforehand.
To summarize, functions and interactions of uncharac-

terized proteins are predicted based on similarity to other
proteins and proteins pairs, respectively. The genome-
wide predictions follow from applying consistency con-
straints, derived from biologically grounded FOL rules,
to the low level predictions. In doing so, the constraints
propagate information across GO terms and between the
functional and interaction predictions.

Rules
Functional annotations are naturally subject to con-
straints. We consider both constraints entailed by the
Gene Ontology and constraints imposed by the (par-
tially predicted) protein–protein interaction network.
SBR allows to express these through First-Order Logic
rules, and to efficiently reason over them, even in the pres-
ence of inconsistencies. We proceed to describe the rules
employed by OCELOT.
Consistency with the GO hierarchies. The GO

encompasses three domains, representing different
aspects of protein function: biological process (BP), cellu-
lar component (CC), and molecular function (MF). Each
domain specifies a term hierarchy, encoded as a directed
acyclic graph: nodes are terms, while edges specify the
specific-to-general isA relation1. More general terms
(parents) are logically implied by more specific ones
(their descendants). For instance, all proteins annotated
with “ribosome” as their Cellular Component must
also be annotated with its ancestor term “intracellular
organelle”. We encourage the OCELOT predictions to
be consistent with the GO with the two following
constraints.
First, terms imply their parents. If a protein p is anno-

tated with a term f, then it must also be annotated with
all of its parent terms. The converse also holds: if p is not
annotated with f, then it can not be annotated with any of
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its children either. These constraints can be expressed as
a single FOL statement:

Funf (p) =⇒
∧

f ′ parent of f
Funf ′(p) ∀ p ∀ f (1)

Second, terms imply some of their children. If p is anno-
tated with f, then it must be also annotated with at least
one of the children of f :

Funf (p) =⇒
∨

f ′ child of f
Funf ′(p) ∀ p ∀ f (2)

Again, the converse also holds. These two rules are
enforced for all GO aspects.
Note that if a protein is annotated (in the data) with a

term f but with none of the children of f, the former may
still result in the protein to be wrongly associated to a
child term. We mitigate this applying the rules only to the
upper levels of the hierarchy, where annotations are more
abundant, as described below. Our empirical results show
that, despite this issue, these rules provide non-negligible
benefits in practice.
Consistency with the interaction predictions. Protein

function and interactions are substantially intertwined:
often a biological process is carried out through physi-
cal interaction, and interacting molecules must usually lie
in the same (or close) cellular compartments. Functional
annotations and interactions are tied together by requir-
ing that binding proteins share at least one term at each
depth of the corresponding domain. This defines one rule
for each level of the considered GO hierarchy, which can
be encoded in FOL as:

Bound(p, p′) =⇒
∨

f∈Domainl

(
Funf (p) ∧ Funf (p′)

) ∀ p, p′, l

(3)

Here Domainl is the set of GO terms appearing at depth
l in the given domain. As above, the rule is soft. This rule
is only applied to the BP and CC domains, as molecular
function is less influenced by physical interactions. Fur-
ther, we observed that this rule is mostly beneficial when
applied to the top 5 levels of the CC taxonomy and 5
levels of the BP one. Its effect becomes irrelevant at the
lower levels. Given that the rule is rather computation-
ally expensive (as it involves all pairs of proteins p, p′ in
the genome and all terms at each depth l), we opted for
applying it to the upper levels only.

Semantic based regularization (SBR)
Knowledge Base and constraints. SBR [7] is based on
a variation of fuzzy generalizations of First Order Logic
(FOL), which have been first proposed by Novak [29], and
which can transform any FOL knowledge base into a set
of real valued constraints.

A T-norm fuzzy logic [30] generalizes Boolean logic to
variables assuming values in [ 0, 1]. A T-norm fuzzy logic
is defined by its T-norm t(a1, a2) that models the logi-
cal AND. A T-norm expression behaves as classical logic
when the variables assume the crisp values 0 (false) or
1 (true). Different T-norm fuzzy logics have been pro-
posed in the literature. For example, given two Boolean
values ā1, ā2 and their continuous generalizations a1, a2
in [ 0, 1], the Łukasiewicz T-norm is defined as (ā1 ∧
ā2) → t(a1, a2) = max(0, a1 + a2 − 1) . The negation
¬ā of a variable corresponds to 1 − a in the Łukasiewicz
T-norm. From the definition of the ∧ and ¬ logic oper-
ators, it is possible to derive the generalized formulation
for the ∨ operator via the DeMorgan law and the impli-
cation ⇒ via the T-norm residuum. Other choices of the
T-norm are possible, like theminimum T-norm defined as
(ā1 ∧ ā2) → t(a1, a2) = min(a1, a2).
We focus our attention on FOL formulas in the Prenex

Normal Form form, having all the quantifiers at the begin-
ning of the expression. The quantifier-free part of the
expression is an assertion in fuzzy propositional logic
once all the quantified variables are grounded. Let’s con-
sider a FOL formula with variables x1, x2, . . ., and let P
indicate the vector of predicates andP(X ) be the set of all
grounded predicates.
The degree of truth of a formula containing an expres-

sion E with a universally quantified variable xi is the aver-
age of the T-norm generalization tE(·), when grounding xi
over Xi:

∀xi E (P(X )) −→ �∀(P (X )) = 1
|Xi|

∑

xi∈Xi

tE (P(X ))

Building constraints from logic. Let us assume to be
given a knowledge base KB, consisting of a set of FOL
formulas. We assume that some of the predicates in the
KB are unknown: the SBR learning process aims at find-
ing a good approximation of each unknown predicate,
so that the estimated predicates will satisfy the FOL for-
mulas for the sample of the inputs. In particular, the
function fj(·) will be learned by a Kernel Machine as
an approximation of the j-th unknown predicate pj. Let
f = {f1, . . . , fT } indicate the vector of all approximated
predicates and f (X ) indicate the output values for all
possible groundings of the approximated predicates. One
constraint 1 − �i(f (X )) = 0 for each formula in the
knowledge base is built by taking its fuzzy FOL general-
ization �i, where the unknown predicates are replaced by
the learned functions.
Cost function and training. Let us assume that a set

of H functional constraints 1 − �h(f ) = 0, 0 ≤ �h(f ) ≤
1, h = 1, . . . ,H describes how the functions should
behave. Let f (X ) be a vector collecting the values of
the functions for each grounding. In order to enforce
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the functions to satisfy the constraints, the cost function
penalizes their violation on the sample of data:

Ce[ f (X )]=
T∑

k=1
||fk||2 + λlL(y, f (X ))

+
H∑

h=1
λh

(
1 − �h

(
f (X )

))
,

where L(y, f (X )) is the loss with respect to the super-
vised examples y, λl is the weight enforcing the fitting of
the supervised patterns, λh is the weight for the h-th con-
straint and the first term is a regularization term penal-
izing non-smooth solutions such that ||fk||2 = wT

k Gkwk ,
where Gk ,wk are the Gram matrix and the weight vector
for the k function, respectively. The weights are optimized
via gradient descent using a back-propagation schema, see
[7] for more details.
Collective classification. The process of performing

inference over a set of instances that are correlated is
commonly referred to asCollective classification [31]. Col-
lective classification takes advantage of the correlations by
performing a collective assignment decision.
Let f (X ′) be a vector collecting the groundings for all

functions over the test data. Collective classification for
SBR minimizes the following cost function to find the
values f̄ (X ′) respecting the FOL formulas on the test data:

Ccoll
[
f̄ (X ′), f (X ′)

] =Lcoll
(
f̄ (X ′), f (X ′)

)

+
∑

h

(
1 − �h

(
f̄ (X ′)

))
.

where Lcoll is a loss penalizing solutions that are not
close to the prior values established by the trained kernel
machines.

Results
Data processing
Annotations We built a comprehensive genome-wide
yeast dataset. All data was retrieved in August 2014.
Protein sequences were taken from the Saccharomyces
Genome Database (SGD) [32]. Only validated ORFs at
least 50 residues long were retained. The sequences were
redundancy reduced with CD-HIT [33] using a 60% max-
imum sequence identity threshold, leading to a set of
4865 proteins. The identity threshold has been chosen
in accordance with the difficult setting of the CAFA
challenges [34].
Functional annotations were also taken from SGD, while

the GO taxonomy was taken from the Gene Ontology
Consortium website2. Following common practice, auto-
matically assigned (IEA) annotations were discarded. We
also removed all obsolete terms and mismatching anno-
tations, i.e. SGD annotations that had no corresponding
term in the GO graph. The resulting annotations were

propagated up to the root, i.e. if a sequence was annotated
with a certain term, it was annotated with all its ancestor
terms in the hierarchy. Since known annotations become
more sparse with term specificity, we discarded the low-
est levels of each GO hierarchy: we retained terms down
to depth 9 for Biological Process and Molecular Function,
and down to 6 for Cellular Component. We also dropped
terms that had fewer than 20 annotations3 . Dropped
annotations were ignored in our performance evaluation.
The resulting dataset includes 9730 positive annotations.
All missing annotations were taken to be negative4.
The protein–protein interaction network was taken

from BioGRID [35]. Only manually curated physical inter-
actions were kept. After adding any missing symmetric
interactions, we obtained 34611 interacting protein pairs.
An equal number of non-interactions was sampled from
the complement of the positive protein–protein inter-
action network uniformly at random. This procedure is
justified by the overwhelming proportion of true non-
interactions in the complement [36]. All physical and
functional interactions annotated in STRING 9.1 [37]
were deleted from the complement prior to sampling, so
to minimize the chance of sampling false negatives.
Kernels In OCELOT, each learned predicate is associ-

ated to a kernel function, which determines the similarity
between two proteins (or protein pairs). Please see [25,
26] for background on kernel methods. Following the
idea that different sources provide complementary infor-
mation [18, 19, 38], we computed a number of kernels,
focusing on a selection of relevant, heterogeneous bio-
logical sources, intended to be useful for predicting both
functions and interactions. The sources include (i) gene
co-localization and (ii) co-expression, (iii) protein com-
plexes, (iv) protein domains, and (v) conservation profiles.
Detailed explanations follow.
(i) Gene co-localization is known to influence the like-

lihood of proteins to physically interact [38], which is a
strong indication of shared function [13, 14]. This infor-
mation is captured by the gene co-localization kernel
Kcoloc(p, p′) = exp

(−γ |pos − pos′|). Here |pos − pos′|
is the distance (measured in bases) separating the cen-
troids of the genes encoding proteins p and p′. Closer
centroids imply higher similarity. Genes located on dif-
ferent chromosomes have null similarity. Gene locations
were obtained from SGD; γ was set to 1. (ii) Simi-
larly, protein complexes offer (noisy and incomplete) evi-
dence about protein–protein interactions [22, 38]. We
incorporated this information through a diffusion kernel
Kcomplex(p, p′) over the catalogue of yeast protein com-
plexes [39]. Roughly speaking, similarity between proteins
is proportional to the number of shared binding partners
(and their shared partners, and so on) the two proteins
have. The exact values are defined in terms of a diffu-
sion process over the complex network. The contribution
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of more distant partners is modulated by a smoothness
parameter β , set to 1 in our experiments. We refer the
reader to [40] for the mathematical details of diffusion
kernels. (iii) Co-expression also provides valuable infor-
mation [15]. The co-expression kernel is an inner product
Kcoexp(p, p′) = 〈e, e′〉 between vectors e and e′ encod-
ing the expression levels of p and p′ across experimen-
tal conditions. The measurements were taken from two
comprehensive sets of micro-array experiments [41, 42]
related to cell-cycle and environmental response in yeast.
(iv) Domains often act as functional building blocks, so
sharing the same domain is a strong indication of shared
function [43]. We used InterPro [44] to infer the domains
occurring in all proteins in the dataset. Presence of a
domain in a protein p (resp. p′) is encoded by an indica-
tor vector d (resp. d′): the k-th entry of d is 1 if the k-th
domain was detected as present in p, and zero otherwise.
Given this information, we defined a linear kernel over
the indicator vectors, i.e. Kdom(p, p′) = ∑

k dkdk′ . Sim-
ilarity is determined by the number of shared domains.
(v) Finally, we included phylogenetic information through
a profile kernel [45, 46] over position-specific scoring
matrices (PSSMs) obtained from the protein sequences.
The PSSMs were computed with iterated PSI-BLAST
(default parameters, two iterations) against the NCBI non-
redundant sequence database (NR), as customary. Please
see [45] for more details on profile kernels.
Each of the above kernels corresponds to a kernel

4865 × 4865 matrix. The matrices were normalized by
the transformation K̂(p, p′) = K(p, p′)/

√
K(p, p)K(p′, p′)

and preconditioned by a small constant (10−6) for numer-
ical stability. Since SBR allows only a single kernel
for each target term, we aggregated all the matrices
into a single one through simple averaging: K(p, p′) =
1
5

∑
all sources s K̂s(p, p′). This transformation equates to

compounding information from all sources into a single
kernel. More sophisticated strategies (e.g. assigning dif-
ferent weights to different kernels) did not provide any
benefits in our empirical analysis. Finally, the interaction
predicate works on pairs of proteins, and thus requires a
kernel between protein pairs. Following Saccà et al. [22],
we computed the pairwise kernel Kpairwise((p, p′), (q, q′))
from the aggregate kernel K(p, p′) as follows:

Kpairwise((p, p′), (q, q′)) =K(p, q) · K(p′, q′)
+ K(p, q′) · K(p′, q)

Thepairwise kernel was also normalized andpreconditioned.

Empirical analysis
We assessed the performance of OCELOT by comparing
it against several competitors: (i) GoFDRU90: the state-
of-the-art GoFDR prediction method [8] trained over all

sequences in UNIREF90 [47]. GoFDR is a state-of-the-
art, sequence-based method that ranked very high in the
CAFA 2 competition [3]. GoFDR5 was shown to per-
form well on both difficult and eukaryote targets. Note
that UNIREF90 contains substantially more sequences
than our own yeast genome dataset (including ortho-
logues), giving GoFDRU90 a significant advantage in terms
of sequence information. (ii) GoFDRyeast: GoFDR trained
only on the same sequences used by OCELOT. Since only
yeast sequences are considered, the parameters of PSI-
BLAST (as used by GoFDR) were adjusted to capture
even lower confidence alignments (namely by increasing
the E-value threshold to 0.9 and the number of iterations
from 3 to 4). (iii) BLAST: an annotation transfer approach
based on BLAST, used as baseline in the CAFA2 com-
petition6. (iv) OCELOT with only GO consistency rules
(i.e. no protein–protein interactions), and with no rules
at all. We refer to these two baselines as OCELOTgo and
OCELOTindep, respectively.
All methods were evaluated in the difficult CAFA set-

ting7 using a 10-fold cross-validation procedure: the pro-
teins were split into 10 subsets, 9 of which were used
for parameter estimation, and the remaining one for
evaluation. The folds were constructed by distributing
functional and interaction annotations among them in a
balanced manner using a greedy procedure. Interactions
were split similarly.
In addition, we also compared OCELOT against

DeepGO [9], a state-of-the-art deep learning approach
that exploits sequence and PPI data. In contrast to the
other methods, the results for DeepGO were obtained
from its web interface8. Having no control over the ontol-
ogy used by DeepGO, we had to limit the comparison
to the overall perfomance computed on the terms in
common between our and DeepGO’s ontologies.
Performance measures. Following the CAFA2 proce-

dure, predicted annotations were evaluated using both
protein-centric and term-centric performance measures
[3]. Protein-centric measures include the Fmax and Smin
scores, defined as:

Fmax = max
τ∈[0,1]

2 pr(τ ) rc(τ )

pr(τ ) + rc(τ )

Smin = min
τ∈[0,1]

√
ru(τ )2 − mi(τ )2

The Fmax score is maximum value achieved by the F1
score, i.e. the harmonic mean of the precision pr(τ ) and
recall rc(τ ):

pr(τ ) = 1
m(τ )

m(τ )∑

i=1

|Pi(τ ) ∩ Ti|
|Pi(τ )|

rc(τ ) = 1
n

n∑

i=1

|Pi(τ ) ∩ Ti|
|Ti|
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Here Pi(τ ) is the set of predicted GO annotations for the
i-th protein, Ti is the set of true (observed) annotations,
m(τ ) is the number of proteins with at least one predicted
annotation at threshold τ , and n is the total number of
proteins. The Smin score is the minimum semantic dis-
tance, defined in terms of the remaining uncertainty (ru)
and misinformation (mi):

ru(τ ) = 1
n

n∑

i=1

∑

f
ic(f )[[ f �∈ Pi(τ ) ∧ f ∈ Ti]]

mi(τ ) = 1
n

n∑

i=1

∑

f
ic(f )[[ f ∈ Pi(τ ) ∧ f �∈ Ti]]

where ic(f ) is the information content of term f and [[ ·]] is
the 0-1 indicator function. Note that thesemetrics capture
the overall quality of the learned model by explicitly opti-
mizing the decision threshold τ . In order to capture the
actual usage of the models, where the decision threshold
can not be optimized directly, we also evaluated the pre-
dicted annotations using the F1 score, i.e. the Fmax score
with τ fixed to 0.5, as well as precision and recall with the
same decision threshold τ = 0.5. As in CAFA2, we used
the Area under the Receiver Operating Characteristic
Curve (AUC) for the term-centric evaluation.

Discussion The overall performance of all predictors
can be found in Fig. 2. At a high level, all prediction
methods tend to perform better than both the simple
BLAST baseline, as expected, and GoFDRyeast. This is
hardly surprising: despite being configured to consider
even distantly related homologues (by tweaking the PSI-
BLAST parameters, as mentioned above), GoFDRyeast
could not transfer any annotations to 1133 targets, as
no alignment could be found in the yeast-only training
set. Allowing GoFDR to access extra-genomic sequences
solves this issue, as shown by the improved performance
of GoFDRU90 over GoFDRyeast.
On the other hand, OCELOT, OCELOTgo, and

OCELOTindep, perform as well or better than GoFDRU90
in terms of Fmax and Smin. The overall performance on
BP and MF are rather close, while for CC the SBR-based
methods offer a large improvement: the Fmax and Smin of
OCELOT are approximately 9% better (resp. higher and
lower) than those of GoFDRU90.
More marked improvements can be observed in the F1

plots. The kernel-based methods perform as well or bet-
ter than GoFDRU90 in all GO domains. This holds despite
the task being very class unbalanced (especially at the
lower levels of the hierarchy), and the decision threshold
being fixed at 0.5. In CC and MF, the biggest contribution
comes from the hierarchy consistency rules. In contrast,
consistency to the protein–protein interaction network

Fig. 2 Overall performance of all prediction methods on the Yeast dataset. Best viewed in color
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seems to be the biggest factor for BP: OCELOT offers
an 8% F1 improvement over OCELOTindep, OCELOTgo and
GoFDRU90.
A breakdown of the performance at different term

depths is provided in Fig. 3. The general trend is the
same as above: all methods outperform the baseline and
GoFDRyeast, and OCELOT with the full set of rules has the
overall best performance. In all cases, the performance
of the OCELOTindep is comparable to that of OCELOT
at the top levels, however it quickly degrades with term
depth. This implies that the consistency rules are success-
fully propagating the correct predictions down the hierar-
chy. This is especially evident for the cellular component
domain. For the molecular function domain, the bottom
levels are predicted as good as the top ones, andmuch bet-
ter than the intermediate levels. This is actually an artifact
of the sparsity in annotations at the lowest levels (recall
that we dropped terms with less than 20 annotations,
which drastically reduces the number of terms which are
predicted in the lowest levels, especially for MF).
Few examples can help highlighting the role of the rules

to enforce consistency in predictions. For example, tax-
onomical consistency allows to recover some GO-terms
for the MAS2 protein which are missed by OCELOTindep.
The predictor correctly assigns the cytoplasmatic
part GO-term to MAS2, but fails to identify its children
terms mitochondrial-part and mitochondrion.
OCELOTgo manages to recover these two terms thanks to
the second taxonomical rule (Eq. 2). When also consider-
ing the consistency with respect to the PPI predictions, the
protein-complex localization is also correctly pre-
dicted for the same protein.
Note that the boost in performance given by the PPI

rules is achieved regardless of the fact that interactions
are predicted and not observed. The PPI predictions per-
formance are: 0.61 precision, 0.80 recall, 0.69 F1 and 0.72
AUC. These performance are only due to the kernels, and
are not affected by the introduction of the GO rules9. As
already mentioned, the fact that PPI prediction can not be
significantly improved by exploiting their correlation with
protein functions is an expected outcome. Indeed, PPI is
comparatively a simpler prediction problem, and informa-
tion tends to propagate from simpler to more complex
tasks. A similar result has been observed in multi-level
interaction prediction, where propagation flows from
the protein to the domain and residue level but not
viceversa [22].
We also compared OCELOT to DeepGO, a state-of-the-

art deep learning-based predictor [9]. Since we could not
train DeepGOon our ontology, we compared themethods
only on the terms shared by our and DeepGO’s ontology.
The results are shown in Fig. 4. The results confirm the
ones obtained by Kulmanov et al. [9], where DeepGO out-
performs GoFDR in terms of AUC. On the other hand,

OCELOT and DeepGO perform comparably, in terms of
AUC and precision, with some slight variation between
different aspects. Note that this holds regardless of the
fact that DeepGO was trained on many more sequences
than OCELOT, and that it uses true interaction data. In
contrast, OCELOT has only access to yeast sequences,
and only to predicted protein interactions. Most impor-
tantly, OCELOT outperforms DeepGO on all aspects for
all other performance measures (Fmax, Smin, recall and F1).
The performance of DeepGO is especially poor under
the F1 metric, showing that the predictor is not suitably
calibrated against the natural decision threshold τ = 0.5.
As a final experiment, we evaluated the performace of

OCELOT and its competitors in a setting where not even
remote homologies can be used to make predictions. We
thus created a further reduced dataset by running psi-cd-
hit [48] (as cd-hit does not support low sequence identity
cutoffs) with a threshold at 25% sequence identity, in order
to stay below the twilight zone of sequence alignment [49].
The resulting dataset is composed by 4140 proteins. The
overall performance for the different methods is reported
in Fig. 5. As expected, a general drop in performance can
be observed with respect to the case with the threshold
at 60% (see Fig. 2). It is however worth noticing that the
drop is not the same among the tested methods. Indeed,
Ocelot-based methods are just marginally affected by the
harder setting, as they rely onmultiple sources of informa-
tion in addition to sequence similarity. On the other hand,
both GoFDRyeast and the baseline perform substantially
worse, with a relative drop of more then 10% in Fmax and
7% in Smin. The breakdown of the performance, reported
in Additional file 1, shows no significant difference in the
performance trends with respect to the original setting.

Conclusion
We introduced OCELOT, a predictive system capable of
jointly predicting functional and protein-protein interac-
tion annotations for all proteins of a given genome. The
system combines kernel machine classifiers for binary and
pairwise classification with a fuzzy logic layer enforc-
ing consistency constraints along the GO hierarchy and
between functional terms and interaction predictions.
We evaluated the system on the Yeast genome, showing
how the rule enforcement layer manages to substantially
improve predictive performance in functional annotation,
achieving results which are on par or better (depending
on the GO domain and performance measure) than those
of a state-of-the-art sequence-based approach fed with
annotations from multiple genomes.
OCELOT can be extended in a number of directions.

The system is currently conceived for intra-genome anno-
tation. A first major extension consists of adapting it to
process multiple genomes simultaneously. This requires
to incorporate both novel specialized predictors, like
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Fig. 3 Breakdown of the performance of all methods at different GO term depth. Because GoFDRyeast and GoFDRU90 predicted no labels for level 6
of cellular component, no metric is reported for the specific depth level. Best viewed in color
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Fig. 4 Overall performance of DeepGO, OCELOT, GoFDR and the baseline on the Yeast dataset. Best viewed in color

Fig. 5 Overall performance of all prediction methods on the Yeast dataset filtered from remote homologies (sequence identity < 25%). Best viewed
in color
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an orthology-based annotator [50], and additional inter-
genome rules, e.g. encouraging (predicted) orthologues
to interact with the same partners. A second research
direction consists in broadening the type of annotations
provided by the system, by e.g. generalizing interaction
prediction to the prediction of biochemical pathways [51].
Care must be taken in encoding appropriate rules in
order to ensure consistent predictions without eccessively
biasing the annotation.

Availability and requirements
• Project name: OCELOT
• Project home page: https://sites.google.com/view/

experimental-data/home
• Operating system(s): GNU/Linux, macOS
• Programming language: Python, C++
• License: BSD 3
• Any restrictions to use by non-academics: None

The datasets supporting the conclusions of this article
are available in the Ocelot data repository, ftp://james.
diism.unisi.it/pub/diligmic/OcelotData.

Endnotes
1 In this paper we restrict ourselves to “isA” rela-

tionships only, since the remaining GO relations, e.g.
“partOf” and “regulates”, occur too infrequently in
the ontology.

2 http://geneontology.org/page/download-ontology
3Annotations of dropped child terms were aggregated

into new “bin” nodes under the same parent. These terms
provide useful supervision during training, and increase
the satisfaction of OCELOT rules; see below for details.

4 Some databases, e.g. NoGO [52], do publish curated
negative functional annotations. However, these
resources do not yet provide enough annotations for
training our predictor. Therefore, we resorted to sam-
pling negative annotations from the non-positive ones,
as is typically done. We adopted the same solution for
negative interaction annotations [53].

5 Software taken from http://gofdr.tianlab.cn.
6 Software taken from https://github.com/yuxjiang/

CAFA2.
7 60% maximum sequence identity
8The DeepGO package does not provide a procedure

for training the model on our yeast dataset. The pre-
dictions were retrived from http://deepgo.bio2vec.net/
deepgo/ on 14th June 2018.

9A main decision choice in using the SBR framework
is the selection of the T-norm used to convert the rules

in the knowledge-base into a differentiable constraint
(see “Semantic based regularization (SBR)” section).
While PPI prediction performance couldn’t be improved
regardless of the choice of the T-norm, the largest
improvements in function prediction were obtained when
converting the logic rules defined in Eq. 3 using the min-
imum T-norm. The derivative of the residuum of the
minimum T-norm with respect to the predicate outputs
has the property of depending only on the value of the
right side of the implication (e.g. the body of a clause).
Therefore, this choice of T-norm makes the PPI predic-
tions, corresponding to the output of the Bound predicate
that appears only on the head of the rule, not affected by
the function predictions. The converse is not true, and the
function predictions are indeed significantly affected and
improved by the PPI output values.

Additional file

Additional file 1: Breakdown of the performance on the dataset filtered
from remote homologies (sequence identity < 25%) at different GO term
depth. Because GoFDRyeast predicted no labels for level 6 of cellular
component, no metric is reported. Best viewed in color. (PDF 62 kb)
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