50 research outputs found

    The Influence of Sedimentation to The Morfology Change of Serang River Estuary at The National Strategic Area Yogyakarta International Airport (Ksn Yia)

    Get PDF
    Abstrak. Bandara Internasional Yogyakarta terletak di Kawasan Strategis Nasional, Kabupaten Kulon Progo. Daerah ini secara geologis merupakan daerah dataran rendah yang diapit oleh Sungai Bogowonto dan Sungai Serang yang menyebabkan banjir tahunan pada musim hujan. Sistem pengendalian banjir dikembangkan untuk menjaga kinerja bandara. Penetapan Kawasan Strategis Nasional juga menyebabkan perubahan tata guna lahan di sekitarnya yang dapat mempengaruhi perubahan morfologi sungai. Perubahan morfologi di kedua sungai tersebut telah diidentifikasi berdasarkan pengamatan di lapangan. Berdasarkan pengamatan tersebut dapat diketahui bahwa peningkatan laju sedimentasi merupakan parameter terpenting yang dapat mengubah morfologi kedua sungai tersebut. Pengaruh perubahan morfologi di muara sungai Serang telah dipelajari dengan menggunakan software DELFT3D, sedimentasi di muara sungai Serang telah disimulasikan dengan beberapa skenario antara lain pada saat monsun barat dan monsun timur. Hasil pemodelan menunjukkan bahwa tebal sedimentasi di muara Serang pada kondisi eksisting adalah 3,5 m pada musim barat dengan luas 0,063 ha dan 4,0 m pada musim timur dengan luas 0,437 ha. Kata-kata Kunci: Morfologi, muara, Delft3D Abstract. The Yogyakarta International Airport has located in the National Strategic Area, Kulon Progo regency. This area is geologically a low-lying area flanked by the Bogowonto River and the Serang River which causes annual flooding in the rainy season. A flood control system was developed to maintain airport performance. The determination of the National Strategic Area has also led to changes in the surrounding land use which can affect changes in the morphology of the rivers. The morphological changes in the two rivers have been identified based on field observations. Based on this observation, it can be seen that the increase in sedimentation rate is the most important parameter that can change the morphology of the two rivers. The effect of morphological changes in the Serang river estuary has been studied using DELFT3D software, the sedimentation in the Serang river estuary has been simulated with several scenarios, including during the west monsoon and east monsoon. The modeling results show that the sedimentation thickness in the Serang estuary under existing conditions is 3.5 m in the west season with an area of ​​0.063 ha and 4.0 m in the east monsoon with an area of ​​0.437 ha. Keywords: Morphology, estuary, Delft3

    The steroid-hormone ecdysone coordinates parallel pupariation neuromotor and morphogenetic subprograms via epidermis-to-neuron Dilp8-Lgr3 signal induction

    Get PDF
    Funding Information: We thank Drs. Carlos Ribeiro, Christen Mirth, Elio Sucena, Filip Port, Frank Schnorrer, Julien Colombani, Maria Dominguez, Maria Luisa Vasconcelos, Pierre Leopold, Simon Bullock, Rita Teodoro, Gerald Rubin, Melissa Harrison, Kate O’Connor-Giles, Jill Wildonger, Mariana Melani, Pablo Wappner, and Christian Wegener for fly stocks and reagents. We thank Ryohei Yagi and Konrad Basler for the LHV2 plasmid and Brain McCabe for the mhc-Gateway destination plasmid. We thank Carlos Ribeiro and Dennis Goldschmidt for help in designing and constructing one of the pupariation arenas and Mariana Melani, Pablo Wappner, Arash Bashirullah, and Filip Port for sharing resources and unpublished data. We thank Arash Bashirullah, Fillip Port, and Carlos Ribeiro for discussions and/or comments on the manuscript, and Jim Truman for discussions on Fraenkel’s pupariation factors. Stocks obtained from the Bloomington Drosophila Stock Center (NIH P40OD018537) were used in this study. Work in the Integrative Biomedicine Laboratory was supported by the European Commission FP7 (PCIG13-GA-2013-618847), by the FCT (IF/00022/2012; Congento LISBOA-01-0145-FEDER-022170, cofinanced by FCT/Lisboa2020; UID/Multi/04462/2019; PTDC/BEXBCM/1370/2014; PTDC/MED-NEU/30753/2017; PTDC/BIA-BID/31071/2017; FCT SFRH/BPD/94112/ 2013; SFRH/BD/94931/2013), the MIT Portugal Program (MIT-EXPL/BIO/0097/2017), and FAPESP (16/09659-3, 16/10342-4, and 17/17904-0). AG is a CONICET researcher, YV holds a CONICET postdoctoral fellowship and FPS and MJD hold a PhD fellowship from CONICET. Work in the Garelli lab was supported by ANPCyT (Agencia Nacional para la Promoción de la Ciencia y la Tecnología, PICT 2014-2900 and PICT 2017-0254) and CONICET (PIP11220150100182CO). Publisher Copyright: © 2021, The Author(s). Copyright: Copyright 2021 Elsevier B.V., All rights reserved.Innate behaviors consist of a succession of genetically-hardwired motor and physiological subprograms that can be coupled to drastic morphogenetic changes. How these integrative responses are orchestrated is not completely understood. Here, we provide insight into these mechanisms by studying pupariation, a multi-step innate behavior of Drosophila larvae that is critical for survival during metamorphosis. We find that the steroid-hormone ecdysone triggers parallel pupariation neuromotor and morphogenetic subprograms, which include the induction of the relaxin-peptide hormone, Dilp8, in the epidermis. Dilp8 acts on six Lgr3-positive thoracic interneurons to couple both subprograms in time and to instruct neuromotor subprogram switching during behavior. Our work reveals that interorgan feedback gates progression between subunits of an innate behavior and points to an ancestral neuromodulatory function of relaxin signaling.publishersversionpublishe

    Population Dynamics of Aedes aegypti and Dengue as Influenced by Weather and Human Behavior in San Juan, Puerto Rico

    Get PDF
    Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence
    corecore