876 research outputs found

    Validation of TiAlN functional coatings through cryo-tribological characterization using a pin-on-disk experiment

    Get PDF
    Abstract The purpose of this study has been to investigate the effects of TiAlN functional coatings in cryo-tribological pin-on-disk experiments. Nowadays, the introduction of new machining technologies for chip removal, both at high speed and in cryogenic conditions, is posing new challenges and opening new horizons to research. As a matter of fact, that in this technology needs to focus on the choice of workpiece materials to be machining and tools coatings used. For the latter, the wear phenomenon has been studied employing pins-on-disk (made by nickel-based alloys) under a liquid nitrogen jet flows simulating cryogenic machining. The coatings used have been of two different types: the coating C1 is a ZrTiAlN quaternary, while the coating C2 is a TiAlN/ZrN. The films were deposited with processes developed by the ENEA Brindisi laboratory using a dual magnetron sputtering and HiPPMS physical deposition technique. The wear measures were acquired employing a full factorial design with two factors: i.e., the test conditions (DRY or CRYO) and the pin coatings (not coated NC, coating C1 or C2). The number of tests was 12 since 2 were the replications. Based on preliminary experimental results, it can be stated that there is a type of coating, i.e., TiAlN/ZrN, that allows for high processing speed, high material removal, and a considerable increase in tool life

    Correcting pervasive errors in RNA crystallography through enumerative structure prediction

    Full text link
    Three-dimensional RNA models fitted into crystallographic density maps exhibit pervasive conformational ambiguities, geometric errors and steric clashes. To address these problems, we present enumerative real-space refinement assisted by electron density under Rosetta (ERRASER), coupled to Python-based hierarchical environment for integrated 'xtallography' (PHENIX) diffraction-based refinement. On 24 data sets, ERRASER automatically corrects the majority of MolProbity-assessed errors, improves the average Rfree factor, resolves functionally important discrepancies in noncanonical structure and refines low-resolution models to better match higher-resolution models

    Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3.

    Get PDF
    Misfolded endoplasmic reticulum (ER) proteins are retro-translocated through the membrane into the cytosol, where they are poly-ubiquitinated, extracted from the ER membrane, and degraded by the proteasome1-4, a pathway termed ER-associated protein degradation (ERAD). Proteins with misfolded domains in the ER lumen or membrane are discarded through the ERAD-L and -M pathways, respectively. In S. cerevisiae, both pathways require the ubiquitin ligase Hrd1, a multi-spanning membrane protein with a cytosolic RING finger domain5,6. Hrd1 is the crucial membrane component for retro-translocation7,8, but whether it forms a protein-conducting channel is unclear. Here, we report a cryo-electron microscopy (cryo-EM) structure of S. cerevisiae Hrd1 in complex with its ER luminal binding partner Hrd3. Hrd1 forms a dimer within the membrane with one or two Hrd3 molecules associated at its luminal side. Each Hrd1 molecule has eight trans-membrane segments, five of which form an aqueous cavity extending from the cytosol almost to the ER lumen, while a segment of the neighboring Hrd1 molecule forms a lateral seal. The aqueous cavity and lateral gate are reminiscent of features in protein-conducting conduits that facilitate polypeptide movement in the opposite direction, that is, from the cytosol into or across membranes9-11. Our results suggest that Hrd1 forms a retro-translocation channel for the movement of misfolded polypeptides through the ER membrane

    KSHV infection of endothelial precursor cells with lymphatic characteristics as a novel model for translational Kaposi's sarcoma studies

    Get PDF
    Author summaryKaposi's sarcoma herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS). The main proliferative component of KS, spindle cells, express markers of lymphatic and blood endothelium. Endothelial precursor cells, which are circulating endothelial colony forming cells (ECFCs), have been proposed as the source of spindle cells. Here we examined both blood and lymphatic ECFCs infected with KSHV. Lymphatic ECFCs are readily infected by KSHV, maintain the viral episomes and show modest transformation of the cells, which the infected blood ECFCs and all uninfected ECFCs failed to show. The lymphatic ECFCs express SOX18, which supported the maintenance of high copy numbers of KSHV genomes. The KSHV-infected lymphatic ECFCs persisted in vivo and recapitulated the phenotype of KS tumor cells such as high number of viral genome copies and spindling morphology. These KS tumor cell hallmarks were significantly reduced by SOX18 chemical inhibition using a small molecule SM4 treatment. These data suggest that KSHV-infected lymphatic ECFCs could be the progenitors of KS spindle cells and are a promising model for the translational studies to develop new therapies for KS.Kaposi's sarcoma herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS), a hyperplasia consisting of enlarged malformed vasculature and spindle-shaped cells, the main proliferative component of KS. While spindle cells express markers of lymphatic and blood endothelium, the origin of spindle cells is unknown. Endothelial precursor cells have been proposed as the source of spindle cells. We previously identified two types of circulating endothelial colony forming cells (ECFCs), ones that expressed markers of blood endothelium and ones that expressed markers of lymphatic endothelium. Here we examined both blood and lymphatic ECFCs infected with KSHV. Lymphatic ECFCs are significantly more susceptible to KSHV infection than the blood ECFCs and maintain the viral episomes during passage in culture while the blood ECFCs lose the viral episome. Only the KSHV-infected lymphatic ECFCs (K-ECFCLY) grew to small multicellular colonies in soft agar whereas the infected blood ECFCs and all uninfected ECFCs failed to proliferate. The K-ECFCLYs express high levels of SOX18, which supported the maintenance of high copy number of KSHV genomes. When implanted subcutaneously into NSG mice, the K-ECFCLYs persisted in vivo and recapitulated the phenotype of KS tumor cells with high number of viral genome copies and spindling morphology. These spindle cell hallmarks were significantly reduced when mice were treated with SOX18 inhibitor, SM4. These data suggest that KSHV-infected lymphatic ECFCs can be utilized as a KSHV infection model for in vivo translational studies to test novel inhibitors representing potential treatment modalities for KS.Peer reviewe

    Similarities and differences between the E5 oncoproteins of bovine papillomaviruses type 1 and type 4: Cytoskeleton, motility and invasiveness in E5-transformed bovine and mouse cells

    Get PDF
    Bovine papillomaviruses (BPVs) are oncogenic viruses. In cattle, BPV-1/2 is associated with urinary bladder cancer and BPV-4 with upper GI tract cancer. BPV E5 is a small hydrophobic protein localised in the endoplasmic reticulum (ER) and Golgi apparatus (GA). E5 is the major transforming protein of BPVs, capable of inducing cell transformation in cultured mouse fibroblasts and, in cooperation with E7, in primary bovine cells. E5-induced cell transformation is accompanied by activation of several cellular protein kinases, including growth factor receptors, and alkalinisation of endosomes and GA. We have reported that BPV E5 causes swelling and fragmentation of the GA and extensive vacuolisation of the cytoplasm. We now show that E5 from both BPV-1 and BPV-4 disturbs the actin cytoskeleton and focal adhesions in transformed bovine cells, where these morphological and behavioural characteristics are accompanied by hyperphosphorylation of the cellular phosphotyrosine kinase c-src. Both BPV-1 and BPV-4 E5 increase the motility of transformed mouse cells, but only BPV-1 E5 causes transformed mouse cells to penetrate a matrigel matrix. BPV-1 transformed mouse cells, but not BPV-4 transformed mouse cells, have hyperhpsphorylated c-src

    phenix.mr_rosetta: molecular replacement and model rebuilding with Phenix and Rosetta.

    Get PDF
    The combination of algorithms from the structure-modeling field with those of crystallographic structure determination can broaden the range of templates that are useful for structure determination by the method of molecular replacement. Automated tools in phenix.mr_rosetta simplify the application of these combined approaches by integrating Phenix crystallographic algorithms and Rosetta structure-modeling algorithms and by systematically generating and evaluating models with a combination of these methods. The phenix.mr_rosetta algorithms can be used to automatically determine challenging structures. The approaches used in phenix.mr_rosetta are described along with examples that show roles that structure-modeling can play in molecular replacement

    Haptic interface control-design issues and experiments with a planar device

    Get PDF
    Describes the haptic rendering of a virtual environment by drawing upon concepts developed in the area of teleoperation. A four-channel teleoperation architecture is shown to be an effective means of coordinating the control of a 3-DOF haptic interface with the simulation of a virtual dynamic environmen

    S4S8-RPA phosphorylation as an indicator of cancer progression in oral squamous cell carcinomas.

    Get PDF
    Oral cancers are easily accessible compared to many other cancers. Nevertheless, oral cancer is often diagnosed late, resulting in a poor prognosis. Most oral cancers are squamous cell carcinomas that predominantly develop from cell hyperplasias and dysplasias. DNA damage is induced in these tissues directly or indirectly in response to oncogene-induced deregulation of cellular proliferation. Consequently, a DNA Damage response (DDR) and a cell cycle checkpoint is activated. As dysplasia transitions to cancer, proteins involved in DNA damage and checkpoint signaling are mutated or silenced decreasing cell death while increasing genomic instability and allowing continued tumor progression. Hyperphosphorylation of Replication Protein A (RPA), including phosphorylation of Ser4 and Ser8 of RPA2, is a well-known indicator of DNA damage and checkpoint activation. In this study, we utilize S4S8-RPA phosphorylation as a marker for cancer development and progression in oral squamous cell carcinomas (OSCC). S4S8-RPA phosphorylation was observed to be low in normal cells, high in dysplasias, moderate in early grade tumors, and low in late stage tumors, essentially supporting the model of the DDR as an early barrier to tumorigenesis in certain types of cancers. In contrast, overall RPA expression was not correlative to DDR activation or tumor progression. Utilizing S4S8-RPA phosphorylation to indicate competent DDR activation in the future may have clinical significance in OSCC treatment decisions, by predicting the susceptibility of cancer cells to first-line platinum-based therapies for locally advanced, metastatic and recurrent OSCC
    corecore