25 research outputs found

    Reciprocal regulation between Smad7 and Sirt1 in the gut

    Get PDF
    In inflammatory bowel disease (IBD) mucosa, there is over-expression of Smad7, an intracellular inhibitor of the suppressive cytokine transforming growth factor-β1, due to post-transcriptional mechanisms that enhance Smad7 acetylation status thus preventing ubiquitination-mediated proteosomal degradation of the protein. IBD-related inflammation is also marked by defective expression of Sirt1, a class III NAD+-dependent deacetylase, which promotes ubiquitination-mediated proteosomal degradation of various intracellular proteins and triggers anti-inflammatory signals. The aim of our study was to determine whether, in IBD, there is a reciprocal regulation between Smad7 and Sirt1. Smad7 and Sirt1 were examined in mucosal samples of IBD patients and normal controls by Western blotting and immunohistochemistry, and Sirt1 activity was assessed by a fluorimetric assay. To determine whether Smad7 is regulated by Sirt1, normal or IBD lamina propria mononuclear cells (LPMC) were cultured with either Sirt1 inhibitor (Ex527) or activator (Cay10591), respectively. To determine whether Smad7 controls Sirt1 expression, ex vivo organ cultures of IBD mucosal explants were treated with Smad7 sense or antisense oligonucleotide. Moreover, Sirt1 expression was evaluated in LPMC isolated from Smad7-transgenic mice given dextran sulfate sodium (DSS). Upregulation of Smad7 was seen in both the epithelial and lamina propria compartments of IBD patients and this associated with reduced expression and activity of Sirt1. Activation of Sirt1 in IBD LPMC with Cay10591 reduced acetylation and enhanced ubiquitination-driven proteasomal-mediated degradation of Smad7, while inhibition of Sirt1 activation in normal LPMC with Ex527 increased Smad7 expression. Knockdown of Smad7 in IBD mucosal explants enhanced Sirt1 expression, thus suggesting a negative effect of Smad7 on Sirt1 induction. Consistently, mucosal T cells of Smad7-transgenic mice contained reduced levels of Sirt1, a defect that was amplified by induction of DSS colitis. The data suggest the existence of a reciprocal regulatory mechanism between Smad7 and Sirt1, which could contribute to amplify inflammatory signals in the gut

    Tbet Expression in Regulatory T Cells Is Required to Initiate Th1-Mediated Colitis

    Get PDF
    In normal conditions gut homeostasis is maintained by the suppressive activity of regulatory T cells (Tregs), characterized by the expression of the transcription factor FoxP3. In human inflammatory bowel disease, which is believed to be the consequence of the loss of tolerance toward antigens normally contained in the gut lumen, Tregs have been found to be increased and functionally active, thus pointing against their possible role in the pathogenesis of this immune-mediated disease. Though, in inflammatory conditions, Tregs have been shown to upregulate the T helper (Th) type 1-related transcription factor Tbet and to express the pro-inflammatory cytokine IFN\u3b3, thus suggesting that at a certain point of the inflammatory process, Tregs might contribute to inflammation rather than suppress it. Starting from the observation that Tregs isolated from the lamina propria of active but not inactive IBD patients or uninflamed controls express Tbet and IFN\u3b3, we investigated the functional role of Th1-like Tregs in the dextran sulfate model of colitis. As observed in human IBD, Th1-like Tregs were upregulated in the inflamed lamina propria of treated mice and the expression of Tbet and IFN\u3b3 in Tregs preceded the accumulation of conventional Th1 cells. By using a Treg-specific Tbet conditional knockout, we demonstrated that Tbet expression in Tregs is required for the development of colitis. Indeed, Tbet knockout mice developed milder colitis and showed an impaired Th1 immune response. In these mice not only the Tbet deficient Tregs but also the Tbet proficient conventional T cells showed reduced IFN\u3b3 expression. However, Tbet deficiency did not affect the Tregs suppressive capacity in vitro and in vivo in the adoptive transfer model of colitis. In conclusion here we show that Tbet expression by Tregs sustains the early phase of the Th1-mediated inflammatory response in the gut

    Interleukin-34 sustains pro-tumorigenic signals in colon cancer tissue

    Get PDF
    Interleukin-34 (IL-34), a cytokine produced by a wide range of cells, binds to the macrophage colony-stimulating factor receptor (M-CSFR-1) and receptor-type protein-tyrosine phosphatase zeta (PTP-z) and controls myeloid cell differentiation, proliferation and survival. various types of cancers over-express IL-34 but the role of the cytokine in colorectal cancer (CRC) remains unknown. We here investigated the expression and functional role of IL-34 in CRC. A more pronounced expression of IL-34 was seen in CRC samples as compared to matched normal/benign colonic samples and this occurred at both RNA and protein level. Immunohistochemical analysis of CRC tissue samples showed that both cancer cells and lamina propria mononuclear cells over-expressed IL-34. Additionally, CRC cells expressed both M-CSFR-1 and PTP-z, thus suggesting that CRC cells can be responsive to IL-34. Indeed, stimulation of DLD-1 cancer cells with IL-34, but not with MSCF1, enhanced the cell proliferation and cell invasion without affecting cell survival. Analysis of intracellular signals underlying the mitogenic effect of IL-34 revealed that the cytokine enhanced activation of ERK1/2 and pharmacologic inhibition of ERK1/2 abrogated IL-34-driven cell proliferation. Consistently, IL-34 knockdown in HT-29 cells with a specific IL-34 antisense oligonucleotide reduced ERK1/2 activation, cell proliferation and enhanced the susceptibility of cells to Oxaliplatin-induced death. This is the first study showing up-regulation of IL-34 in CRC and suggesting a role for this cytokine in colon tumorigenesis

    Smooth muscle and neural dysfunction contribute to different phases of murine postoperative ileus

    No full text
    Postoperative ileus (POI) is characterized by a transient inhibition of gastrointestinal (GI) motility after abdominal surgery mediated by the inflammation of the muscularis externa (ME). The aim of this study was to identify alterations in the enteric nervous system that may contribute to the pathogenesis of POI.status: publishe

    Neuro-anatomical evidence indicating indirect modulation of macrophages by vagal efferents in the intestine but not in the spleen

    Get PDF
    Electrical stimulation of the vagus nerve suppresses intestinal inflammation and normalizes gut motility in a mouse model of postoperative ileus. The exact anatomical interaction between the vagus nerve and the intestinal immune system remains however a matter of debate. In the present study, we provide additional evidence on the direct and indirect vagal innervation of the spleen and analyzed the anatomical evidence for neuroimmune modulation of macrophages by vagal preganglionic and enteric postganglionic nerve fibers within the intestine. Dextran conjugates were used to label vagal preganglionic (motor) fibers projecting to the small intestine and spleen. Moreover, identification of the neurochemical phenotype of the vagal efferent fibers and enteric neurons was performed by immunofluorescent labeling. F4/80 antibody was used to label resident macrophages. Our anterograde tracing experiments did not reveal dextran-labeled vagal fibers or terminals in the mesenteric ganglion or spleen. Vagal efferent fibers were confined within the myenteric plexus region of the small intestine and mainly endings around nNOS, VIP and ChAT positive enteric neurons. nNOS, VIP and ChAT positive fibers were found in close proximity of intestinal resident macrophages carrying α7 nicotinic receptors. Of note, VIP receptors were found on resident macrophages located in close proximity of VIP positive nerve fibers. In the present study, we show that the vagus nerve does not directly interact with resident macrophages in the gut or spleen. Instead, the vagus nerve preferentially interacts with nNOS, VIP and ChAT enteric neurons located within the gut muscularis with nerve endings in close proximity of the resident macrophage

    Neuro-Anatomical Evidence Indicating Indirect Modulation of Macrophages by Vagal Efferents in the Intestine but Not in the Spleen

    No full text
    BACKGROUND: Electrical stimulation of the vagus nerve suppresses intestinal inflammation and normalizes gut motility in a mouse model of postoperative ileus. The exact anatomical interaction between the vagus nerve and the intestinal immune system remains however a matter of debate. In the present study, we provide additional evidence on the direct and indirect vagal innervation of the spleen and analyzed the anatomical evidence for neuroimmune modulation of macrophages by vagal preganglionic and enteric postganglionic nerve fibers within the intestine. METHODS: Dextran conjugates were used to label vagal preganglionic (motor) fibers projecting to the small intestine and spleen. Moreover, identification of the neurochemical phenotype of the vagal efferent fibers and enteric neurons was performed by immunofluorescent labeling. F4/80 antibody was used to label resident macrophages. RESULTS: Our anterograde tracing experiments did not reveal dextran-labeled vagal fibers or terminals in the mesenteric ganglion or spleen. Vagal efferent fibers were confined within the myenteric plexus region of the small intestine and mainly endings around nNOS, VIP and ChAT positive enteric neurons. nNOS, VIP and ChAT positive fibers were found in close proximity of intestinal resident macrophages carrying α7 nicotinic receptors. Of note, VIP receptors were found on resident macrophages located in close proximity of VIP positive nerve fibers. CONCLUSION: In the present study, we show that the vagus nerve does not directly interact with resident macrophages in the gut or spleen. Instead, the vagus nerve preferentially interacts with nNOS, VIP and ChAT enteric neurons located within the gut muscularis with nerve endings in close proximity of the resident macrophages.status: publishe

    Systemic inflammation with enhanced brain activation contributes to more severe delay in postoperative ileus

    No full text
    The severity of postoperative ileus (POI) has been reported to result from decreased contractility of the muscularis inversely related to the number of infiltrating leukocytes. However, we previously observed that the severity of POI is independent of the number of infiltrating leukocytes, indicating that different mechanisms must be involved. Here, we hypothesize that the degree of tissue damage in response to intestinal handling determines the upregulation of local cytokine production and correlates with the severity of POI. Intestinal transit, the inflammatory response, I-FABP (marker for tissue damage) levels and brain activation were determined after different intensities of intestinal handling. Intense handling induced a more pronounced ileus compared with gentle intestinal manipulation (IM). No difference in leukocytic infiltrates in the handled and non-handled parts of the gut was observed between the two intensities of intestinal handling. However, intense handling resulted in significantly more tissue damage and was accompanied by a systemic inflammation with increased plasma levels of pro-inflammatory cytokines. In addition, intense but not gentle handling triggered enhanced c-Fos expression in the nucleus of the solitary tract (NTS) and area postrema (AP). In patients, plasma levels of I-FABP and inflammatory cytokines were significantly higher after open compared with laparoscopic surgery, and were associated with more severe POI. Not the influx of leukocytes, rather the manipulation-induced damage and subsequent inflammatory response determine the severity of POI. The release of tissue damage mediators and pro-inflammatory cytokines into the systemic circulation most likely contribute to the impaired motility of non-manipulated intestin

    Absence of intestinal inflammation and postoperative ileus in a mouse model of laparoscopic surgery

    Get PDF
    Postoperative ileus (POI) is characterized by impaired gastrointestinal motility resulting from intestinal handling-associated inflammation. The introduction of laparoscopic surgery has dramatically reduced the duration of POI. However, it remains unclear to what extent this results in a reduction of intestinal inflammation. The aim of the present study is to compare the degree of intestinal inflammation and gastrointestinal transit following laparoscopic surgery and open abdominal surgery.status: publishe

    Absence of intestinal inflammation and postoperative ileus in a mouse model of laparoscopic surgery

    No full text
    Postoperative ileus (POI) is characterized by impaired gastrointestinal motility resulting from intestinal handling-associated inflammation. The introduction of laparoscopic surgery has dramatically reduced the duration of POI. However, it remains unclear to what extent this results in a reduction of intestinal inflammation. The aim of the present study is to compare the degree of intestinal inflammation and gastrointestinal transit following laparoscopic surgery and open abdominal surgery. Mice were subjected to laparoscopic surgery or laparotomy alone or, in combination with standardized intestinal manipulation of the small bowel (IM). Gastrointestinal transit and intestinal inflammation were assessed 24 h after surgery by the number of myeloperoxidase (MPO) positive cells and the level of cytokine expression. The recovery time and the degree of inflammation were also analyzed in patients subjected to colectomy under open conditions (laparotomy) or laparoscopic conditions. Mice undergoing IM by laparotomy (open IM), but not by laparoscopy (Lap IM) developed a significant delay in gastrointestinal transit compared to laparotomy or laparoscopy alone. In addition, there was significant intestinal inflammation only after open IM. Similarly, cytokine levels in peritoneal lavage fluid were lower while recovery time was faster in patients subjected to colectomy under laparoscopic conditions compared to open colectomy. Our data confirms that intestinal inflammation is underlying the delayed gastrointestinal transit observed after open surgery. Most importantly, we demonstrate that intestinal inflammation under laparoscopic conditions is significantly lower compared to open surgery, most likely explaining the faster recovery following laparoscopic surger

    Vagus nerve efferent fibers and terminals are close to cholinergic and nitrergic enteric neurons.

    No full text
    <p>A. Epifluorescence image shows dextran-labeled vagal efferents (green) that co-localize with ChaT (yellow), and are in close contact with ChaT positive enteric neurons (red). B. Epifluorescence image shows labeled vagal efferent fibers (green) making contact with nNOS positive neurons (red). Of note, cholinergic neurons, and to lesser extent nitrergic neurons, are the main population targeted by the vagal efferent fibers. C. Confocal image of VIP (red) and nNOS (green) myenteric neurons. Most of the cells bodies exhibit co-localization of these two neurotransmitters (arrow head). D. Confocal image of VIP (red) and ChaT (green) myenteric neurons. Occasionally myenteric neurons showed immunoreactivity for both neurotransmitters (arrow head). C1 and C2 show the distribution for the nNOS and VIP positive cells bodies, respectively. D1 and D2 show the distribution for ChaT and VIP positive cells bodies. Scale bar represents 20 µm.</p
    corecore