69 research outputs found

    A radial mass profile analysis of the lensing cluster MS2137-23

    Full text link
    We reanalyze the strong lens modeling of the cluster of galaxies MS2137-23 using a new data set obtained with the ESO VLT. We found the photometric redshifts of the two main arc systems are both at z=1.6. After subtraction of the central cD star light of the HST image we found that only one object lying underneath has the expected properties of the fifth image associated to the tangential arc. We improve the previous lens modelings of the central dark matter distribution of the cluster, using an isothermal model with a core (IS) and the NFW-like model with a cusp. Without the fifth image, the arc properties together with the shear map profile are equally well fit by the and by an IS and a sub-class of generalized-NFW mass profiles having inner slope power index in the range 0.7<alpha<1.2. Adding new constrains provided by the fifth image favors IS profiles that better predict the fifth image properties. A model including cluster galaxy perturbations or the the stellar mass distribution does not change our conclusions but imposes the M/L_I of the cD stellar component is below 10 at a 99% confidence level. Using our new detailed lensing model together with Chandra X-ray data and the cD stellar component we finally discuss intrinsic properties of the gravitational potential. Whereas X-ray and dark matter have a similar shape at various radius, the cD stellar isophotes are twisted by 13 deg. The sub- arc-second azimuthal shift we observe between the radial arc position and the predictions of elliptical models correspond to what is expected from a mass distribution twist. This shift may result from a projection effect of the cD and the cluster halos, thus revealing the triaxiality of the system.Comment: Final version accepted in A&

    Mass-detection of a matter concentration projected near the cluster Abell 1942: Dark clump or high-redshift cluster?

    Get PDF
    A weak-lensing analysis of wide-field VV- and II-band images centered on the cluster Abell 1942 has uncovered a mass concentration ∌7\sim 7 arcminutes South of the cluster center. A statistical analysis shows that the detections are highly significant. No strong concentration of bright galaxies is seen at the position of the mass concentration, though a slight galaxy number overdensity and a weak extended X-ray source are present about 1' away from its center. From the spatial dependence of the tangential alignment around the center of the mass concentration, we inferred a lower bound on the mass inside a sphere of radius 0.5h−10.5 h^{-1}\ts Mpc of 1×1014h−1M⊙1\times 10^{14}h^{-1}M_\odot, much higher than crude mass estimates based on X-ray data. No firm conclusion can be inferred about the nature of the clump. If it were a high-redshift cluster, the weak X-ray flux would indicate that it had an untypically low X-ray luminosity for its mass; if the X-ray emission were physically unrelated to the mass concentration, this conclusion would be even stronger. The search for massive halos by weak lensing enables us for the first time to select halos based on their mass properties only and to detect new types of objects, e.g., dark halos. The mass concentration in the field of A1942 may be the first example of such a halo.Comment: Sumitted to A&A Main Journal. 15 pages, 11 figures. 75 Kb gzipped tar file. Figures with images not included, but available on ftp.iap.fr /pub/from_users/mellier/A1942: a1942darkclump.ps.gz (2.1 Mb

    Properties of high-z galaxies as seen through lensing clusters

    Get PDF
    We discuss the first results obtained on the study of a sample of high-z galaxies (2 < z < 7), using the gravitational amplification effect in the core of lensing clusters. Sources are located close to the critical lines in clusters with well constrained mass distributions, and selected through photometric redshifts, computed on a large wavelength domain, and lens inversion techniques.Comment: 5 pages, 3 figures, Conference Proceedings of the "Clustering at High Redshift" Conference, June 29 to July 2, 1999, Marseille (France

    Detection of correlated galaxy ellipticities on CFHT data: first evidence for gravitational lensing by large-scale structures

    Get PDF
    We report the detection of a significant (5.5 sigma) excess of correlations between galaxy ellipticities at scales ranging from 0.5 to 3.5 arc-minutes. This detection of a gravitational lensing signal by large-scale structure was made using a composite high quality imaging survey of 6300 arcmin^2 obtained at the Canada France Hawaii Telescope (CFHT) with the UH8K and CFH12K panoramic CCD cameras. The amplitude of the excess correlation is 2.2\pm 0.2 % at 1 arcmin scale, in agreement with theoretical predictions of the lensing effect induced by large-scale structure.We provide a quantitative analysis of systematics which could contribute to the signal and show that the net effect is small and can be corrected for. We show that the measured ellipticity correlations behave as expected for a gravitational shear signal. The relatively small size of our survey precludes tight constraints on cosmological models. However the data are in favor of cluster normalized cosmological models, and marginally reject Cold Dark Matter models with (Omega=0.3, sigma_8<0.6) or (Omega=1, sigma_8=1). The detection of cosmic shear demonstrates the technical feasibility of using weak lensing surveys to measure dark matter clustering and the potential for cosmological parameter measurements, in particular with upcoming wide field CCD cameras.Comment: 19 pages. 19 Figures. Revised version accepted in A&
    • 

    corecore