1,620 research outputs found
Single-shot carrier-envelope-phase measurement in ambient air
The ability to measure and control the carrier envelope phase (CEP) of
few-cycle laser pulses is of paramount importance for both frequency metrology
and attosecond science. Here, we present a phase meter relying on the
CEP-dependent photocurrents induced by circularly polarized few-cycle pulses
focused between electrodes in ambient air. The new device facilitates compact
single-shot, CEP measurements under ambient conditions and promises CEP tagging
at repetition rates orders of magnitude higher than most conventional CEP
detection schemes as well as straightforward implementation at longer
wavelengths
Multiscale theory of turbulence in wavelet representation
We present a multiscale description of hydrodynamic turbulence in
incompressible fluid based on a continuous wavelet transform (CWT) and a
stochastic hydrodynamics formalism. Defining the stirring random force by the
correlation function of its wavelet components, we achieve the cancellation of
loop divergences in the stochastic perturbation expansion. An extra
contribution to the energy transfer from large to smaller scales is considered.
It is shown that the Kolmogorov hypotheses are naturally reformulated in
multiscale formalism. The multiscale perturbation theory and statistical
closures based on the wavelet decomposition are constructed.Comment: LaTeX, 27 pages, 3 eps figure
Electro-optic characterization of synthesized infrared-visible light fields
The measurement and control of light field oscillations enable the study of ultrafast phenomena on sub-cycle time scales. Electro-optic sampling (EOS) is a powerful field characterization approach, in terms of both sensitivity and dynamic range, but it has not reached beyond infrared frequencies. Here, we show the synthesis of a sub-cycle infrared-visible pulse and subsequent complete electric field characterization using EOS. The sampled bandwidth spans from 700βnm to 2700βnm (428 to 110βTHz). Tailored electric-field waveforms are generated with a two-channel field synthesizer in the infrared-visible range, with a full-width at half-maximum duration as short as 3.8βfs at a central wavelength of 1.7βΒ΅m (176βTHz). EOS detection of the complete bandwidth of these waveforms extends it into the visible spectral range. To demonstrate the power of our approach, we use the sub-cycle transients to inject carriers in a thin quartz sample for nonlinear photoconductive field sampling with sub-femtosecond resolution
The emergence of macroscopic currents in photoconductive sampling of optical fields
Photoconductive field sampling enables petahertz-domain optoelectronic applications that advance our understanding of light-matter interaction. Despite the growing importance of ultrafast photoconductive measurements, a rigorous model for connecting the microscopic electron dynamics to the macroscopic external signal is lacking. This has caused conflicting interpretations about the origin of macroscopic currents. Here, we present systematic experimental studies on the signal formation in gas-phase photoconductive sampling. Our theoretical model, based on the RamoβShockley-theorem, overcomes the previously introduced artificial separation into dipole and current contributions. Extensive numerical particle-in-cell-type simulations permit a quantitative comparison with experimental results and help to identify the roles of electron-neutral scattering and mean-field charge interactions. The results show that the heuristic models utilized so far are valid only in a limited range and are affected by macroscopic effects. Our approach can aid in the design of more sensitive and more efficient photoconductive devices
Π‘ΠΏΡΡΠΎ[Π±Π΅Π½Π·ΠΎ[Π΅]ΠΏΡΡΠ°Π½ΠΎ[3,2-Ρ][1,2]ΠΎΠΊΡΠ°ΡΡΡΠ½-4,3β-ΡΠ½Π΄ΠΎΠ»]-3-ΠΊΠ°ΡΠ±ΠΎΠ½ΡΡΡΠΈΠ» 5,5-Π΄ΡΠΎΠΊΡΠΈΠ΄ΠΈ: ΡΠΈΠ½ΡΠ΅Π· Ρ Π²ΠΈΠ²ΡΠ΅Π½Π½Ρ Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ
The development of medicines with several pharmacological activities, including the analgesic, anti-inflammatory and antimicrobial properties, is one of the challenging tasks of modern medicinal chemistry.Aim. To expand the range of novel spiro-condensed derivatives of 1,2-benzoxathiin-4(3H)-one 2,2-dioxide, and study the biological activity of the substances obtained.Results and discussions. The target compounds were synthesized as a result of the interaction of 1,2-benzoxathiin-4(3H)-one 2,2-dioxide, malononitrile and isatins. When using ethyl cyanoacetate the interaction appeared to be much more complicated and requires further research. The study of the biological activity has revealed the compounds with the analgesic properties and the antimicrobial effect against gram-positive strains.Experimental part. Two new 2-amino-2β-oxospiro[4H-pyrano[3,2-c][1,2]benzoxathiine-4,3β-indoline]-3-carbonitrile 5,5-dioxides were synthesized by the three-component reaction based on 1,2-benzoxathiin-4(3H)-one 2,2-dioxide. The anti-inflammatory activity was studied on the model of the carrageenan induced paw edema, and the analgesic activity was assessed on the model of the local inflammatory hyperalgesia. The study of the antimicrobial activity of the compounds obtained was performed by the agar well diffusion method.Conclusions. New spiro[benzo[Π΅]pyrano[3,2-c][1,2]oxathiin-4,3β-indolil]-3-carbonitrile 5,5-dioxides have been synthesized. The compounds obtained have revealed high levels of the analgesic properties and the antimicrobial activity. The latter exceeds the activity of the reference drugs, and has appeared to be higher against grampositive bacteria.Π Π°Π·ΡΠ°Π±ΠΎΡΠΊΠ° Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΡΡ
ΡΡΠ΅Π΄ΡΡΠ² Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΠΌΠΈ Π²ΠΈΠ΄Π°ΠΌΠΈ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ, Π²ΠΊΠ»ΡΡΠ°Ρ Π°Π½Π°Π»ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅, ΠΏΡΠΎΡΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΈ Π°Π½ΡΠΈΠΌΠΈΠΊΡΠΎΠ±Π½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π°, ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π²Π°ΠΆΠ½ΡΡ
Π·Π°Π΄Π°Ρ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΎΠΉ Ρ
ΠΈΠΌΠΈΠΈ.Π¦Π΅Π»Ρ. Π Π°ΡΡΠΈΡΠΈΡΡ ΡΡΠ΄ Π½ΠΎΠ²ΡΡ
ΡΠΏΠΈΡΠΎΠΊΠΎΠ½Π΄Π΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ
1,2-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΠΈΠΈΠ½-4(3Π)-ΠΎΠ½ 2,2-Π΄ΠΈΠΎΠΊΡΠΈΠ΄Π° ΠΈ ΠΈΠ·ΡΡΠΈΡΡ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
Π²Π΅ΡΠ΅ΡΡΠ².Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈ ΠΈΡ
ΠΎΠ±ΡΡΠΆΠ΄Π΅Π½ΠΈΠ΅. Π¦Π΅Π»Π΅Π²ΡΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ Π±ΡΠ»ΠΈ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Ρ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ 1,2-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΠΈΠΈΠ½-4(3Π)-ΠΎΠ½ 2,2-Π΄ΠΈΠΎΠΊΡΠΈΠ΄Π°, ΠΌΠ°Π»ΠΎΠ½ΠΎΠ΄ΠΈΠ½ΠΈΡΡΠΈΠ»Π° ΠΈ ΠΈΠ·Π°ΡΠΈΠ½ΠΎΠ². Π ΡΠ»ΡΡΠ°Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠΈΠ»ΡΠΈΠ°Π½ΠΎΠ°ΡΠ΅ΡΠ°ΡΠ° Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΌΠ΅ΡΠΈΠ»Π΅Π½Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π½ΠΈΡΡΠΈΠ»Π° Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΎΠΊΠ°Π·Π°Π»ΠΎΡΡ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π±ΠΎΠ»Π΅Π΅ ΡΠ»ΠΎΠΆΠ½ΡΠΌ ΠΈ Π½ΡΠΆΠ΄Π°Π΅ΡΡΡ Π² Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅ΠΌ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠΈ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π²ΡΡΠ²ΠΈΠ»ΠΎ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ Ρ Π°Π½Π°Π»ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ ΠΈ Π°Π½ΡΠΈΠΌΠΈΠΊΡΠΎΠ±Π½ΡΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ΠΌ Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ Π³ΡΠ°ΠΌΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΡΡΠ°ΠΌΠΌΠΎΠ².ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½Π°Ρ ΡΠ°ΡΡΡ. ΠΠ²Π° Π½ΠΎΠ²ΡΡ
2-Π°ΠΌΠΈΠ½ΠΎ-2β-ΠΎΠΊΡΠΎΡΠΏΠΈΡΠΎ[4Π-ΠΏΠΈΡΠ°Π½ΠΎ[3,2-Ρ][1,2]Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΠΈΠΈΠ½-4,3β-ΠΈΠ½Π΄ΠΎΠ»ΠΈΠ½]-3-ΠΊΠ°ΡΠ±ΠΎΠ½ΠΈΡΡΠΈΠ» 5,5-Π΄ΠΈΠΎΠΊΡΠΈΠ΄Π° Π±ΡΠ»ΠΈ ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠ΅Ρ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΠΉ ΡΠ΅Π°ΠΊΡΠΈΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ 1,2-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΠΈΠΈΠ½-4(3Π)-ΠΎΠ½ 2,2-Π΄ΠΈΠΎΠΊΡΠΈΠ΄Π°. ΠΡΠΎΡΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈΠ·ΡΡΠ°Π»ΠΈ Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΊΠ°ΡΠ°Π³Π΅Π½ΠΈΠ½-ΠΈΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΡΠ΅ΠΊΠ°, Π° Π°Π½Π°Π»ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈ Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΠΉ Π²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ Π³ΠΈΠΏΠ΅ΡΠ°Π»Π³Π΅Π·ΠΈΠΈ. ΠΡΠ»ΠΎ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π°Π½ΡΠΈΠΌΠΈΠΊΡΠΎΠ±Π½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π΄ΠΈΡΡΡΠ·ΠΈΠΈ Π² Π°Π³Π°Ρ.ΠΡΠ²ΠΎΠ΄Ρ. Π‘ΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Ρ Π½ΠΎΠ²ΡΠ΅ ΡΠΏΠΈΡΠΎ[Π±Π΅Π½Π·ΠΎ[Π΅]ΠΏΠΈΡΠ°Π½ΠΎ[3,2-Ρ][1,2]ΠΎΠΊΡΠ°ΡΠΈΠΈΠ½-4,3β-ΠΈΠ½Π΄ΠΎΠ»ΠΈΠ»]-3-ΠΊΠ°ΡΠ±ΠΎΠ½ΠΈΡΡΠΈΠ» 5,5-Π΄ΠΈΠΎΠΊΡΠΈΠ΄Ρ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΠΏΡΠΎΡΠ²ΠΈΠ»ΠΈ Π°Π½Π°Π»ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΈ Π°Π½ΡΠΈΠΌΠΈΠΊΡΠΎΠ±Π½ΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΡΠ΅Π²ΡΡΠ°Π΅Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ² ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΈ ΠΎΠΊΠ°Π·Π°Π»Π°ΡΡ Π²ΡΡΠ΅ Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ Π³ΡΠ°ΠΌΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ
Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ.Π ΠΎΠ·ΡΠΎΠ±ΠΊΠ° Π»ΡΠΊΠ°ΡΡΡΠΊΠΈΡ
Π·Π°ΡΠΎΠ±ΡΠ², ΡΠΎ Π²ΠΎΠ»ΠΎΠ΄ΡΡΡΡ Π΄Π΅ΠΊΡΠ»ΡΠΊΠΎΠΌΠ° Π²ΠΈΠ΄Π°ΠΌΠΈ ΡΠ°ΡΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ, Π²ΠΊΠ»ΡΡΠ°ΡΡΠΈ Π·Π½Π΅Π±ΠΎΠ»ΡΠ²Π°Π»ΡΠ½Ρ, ΠΏΡΠΎΡΠΈΠ·Π°ΠΏΠ°Π»ΡΠ½Ρ ΡΠ° Π°Π½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½Ρ, Ρ ΠΎΠ΄Π½ΠΈΠΌ Π· Π²Π°ΠΆΠ»ΠΈΠ²ΠΈΡ
Π·Π°Π²Π΄Π°Π½Ρ ΡΡΡΠ°ΡΠ½ΠΎΡ ΠΌΠ΅Π΄ΠΈΡΠ½ΠΎΡ Ρ
ΡΠΌΡΡ.ΠΠ΅ΡΠ°. Π ΠΎΠ·ΡΠΈΡΠΈΡΠΈ ΡΡΠ΄ Π½ΠΎΠ²ΠΈΡ
ΡΠΏΡΡΠΎΠΊΠΎΠ½Π΄Π΅Π½ΡΠΎΠ²Π°Π½ΠΈΡ
ΠΏΠΎΡ
ΡΠ΄Π½ΠΈΡ
1,2-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΡΡΠ½-4(3Π)-ΠΎΠ½ 2,2-Π΄ΡΠΎΠΊΡΠΈΠ΄Ρ Ρ Π΄ΠΎΡΠ»ΡΠ΄ΠΈΡΠΈ Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½Ρ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ
ΡΠ΅ΡΠΎΠ²ΠΈΠ½.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΈ ΡΠ° ΡΡ
ΠΎΠ±Π³ΠΎΠ²ΠΎΡΠ΅Π½Π½Ρ. Π¦ΡΠ»ΡΠΎΠ²Ρ ΡΠΏΠΎΠ»ΡΠΊΠΈ Π±ΡΠ»ΠΈ ΡΠΈΠ½ΡΠ΅Π·ΠΎΠ²Π°Π½Ρ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ 1,2-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΡΡΠ½-4(3Π)-ΠΎΠ½ 2,2-Π΄ΡΠΎΠΊΡΠΈΠ΄Ρ, ΠΌΠ°Π»ΠΎΠ½ΠΎΠ΄ΠΈΠ½ΡΡΡΠΈΠ»Ρ ΡΠ° ΡΠ·Π°ΡΠΈΠ½ΡΠ². Π£ Π²ΠΈΠΏΠ°Π΄ΠΊΡ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ Π΅ΡΠΈΠ»ΡΡΠ°Π½ΠΎΠ°ΡΠ΅ΡΠ°ΡΡ ΡΠΊ ΠΌΠ΅ΡΠΈΠ»Π΅Π½Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π½ΡΡΡΠΈΠ»Ρ Π²Π·Π°ΡΠΌΠΎΠ΄ΡΡ Π²ΠΈΡΠ²ΠΈΠ»Π°ΡΡ Π½Π°Π±Π°Π³Π°ΡΠΎ ΡΠΊΠ»Π°Π΄Π½ΡΡΠΎΡ Ρ ΠΏΠΎΡΡΠ΅Π±ΡΡ ΠΏΠΎΠ΄Π°Π»ΡΡΠΈΡ
Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Ρ. ΠΠΈΠ²ΡΠ΅Π½Π½Ρ Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π²ΠΈΡΠ²ΠΈΠ»ΠΎ ΡΠΏΠΎΠ»ΡΠΊΠΈ Π· Π°Π½Π°Π»ΡΠ³Π΅ΡΠΈΡΠ½ΠΈΠΌΠΈ Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΡΠΌΠΈ ΡΠ° Π°Π½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½ΠΎΡ Π΄ΡΡΡ ΠΏΡΠΎΡΠΈ Π³ΡΠ°ΠΌΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΠΈΡ
ΡΡΠ°ΠΌΡΠ².ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½Π° ΡΠ°ΡΡΠΈΠ½Π°. ΠΠ²Π° Π½ΠΎΠ²ΠΈΡ
2-Π°ΠΌΡΠ½ΠΎ-2β-ΠΎΠΊΡΠΎΡΠΏΡΡΠΎ[4H-ΠΏΡΡΠ°Π½ΠΎ[3,2-Ρ][1,2]Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΡΡΠ½-4,3β-ΡΠ½Π΄ΠΎΠ»ΡΠ½]-3-ΠΊΠ°ΡΠ±ΠΎΠ½ΡΡΡΠΈΠ» 5,5-Π΄ΡΠΎΠΊΡΠΈΠ΄ΠΈ Π±ΡΠ»ΠΈ ΡΠΈΠ½ΡΠ΅Π·ΠΎΠ²Π°Π½Ρ Π·Π° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ ΡΡΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΡ ΡΠ΅Π°ΠΊΡΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Ρ 1,2-Π±Π΅Π½Π·ΠΎΠΊΡΠ°ΡΡΡΠ½-4(3Π)-ΠΎΠ½ 2,2-Π΄ΡΠΎΠΊΡΠΈΠ΄Ρ. ΠΡΠΎΡΠΈΠ·Π°ΠΏΠ°Π»ΡΠ½Ρ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ Π²ΠΈΠ²ΡΠ°Π»ΠΈ Π½Π° ΠΌΠΎΠ΄Π΅Π»Ρ ΠΊΠ°ΡΠ°Π³Π΅Π½ΡΠ½ΠΎΠ²ΠΎΠ³ΠΎ Π½Π°Π±ΡΡΠΊΡ, Π°Π½Π°Π»ΡΠ³Π΅ΡΠΈΡΠ½Ρ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΠΎΡΡΠ½ΡΠ²Π°Π»ΠΈ Π½Π° ΠΌΠΎΠ΄Π΅Π»Ρ ΠΌΡΡΡΠ΅Π²ΠΎΡ Π·Π°ΠΏΠ°Π»ΡΠ½ΠΎΡ Π³ΡΠΏΠ΅ΡΠ°Π»Π³Π΅Π·ΡΡ. ΠΡΠ»ΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Ρ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π°Π½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½ΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΎΡΡΠΈΠΌΠ°Π½ΠΈΡ
ΡΠΏΠΎΠ»ΡΠΊ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π΄ΠΈΡΡΠ·ΡΡ Π² Π°Π³Π°Ρ.ΠΠΈΡΠ½ΠΎΠ²ΠΊΠΈ. Π‘ΠΈΠ½ΡΠ΅Π·ΠΎΠ²Π°Π½ΠΎ Π½ΠΎΠ²Ρ ΡΠΏΡΡΠΎ[Π±Π΅Π½Π·ΠΎ[Π΅]ΠΏΡΡΠ°Π½ΠΎ[3,2-Ρ][1,2]ΠΎΠΊΡΠ°ΡΡΡΠ½-4,3β-ΡΠ½Π΄ΠΎΠ»]-3-ΠΊΠ°ΡΠ±ΠΎΠ½ΡΡΡΠΈΠ» 5,5-Π΄ΡΠΎΠΊΡΠΈΠ΄ΠΈ. ΠΡΡΠΈΠΌΠ°Π½Ρ ΡΠΏΠΎΠ»ΡΠΊΠΈ Π²ΠΈΡΠ²ΠΈΠ»ΠΈ Π²ΠΈΡΠΎΠΊΠΈΠΉ ΡΡΠ²Π΅Π½Ρ Π°Π½Π°Π»ΡΠ³Π΅ΡΠΈΡΠ½ΠΎΡ ΡΠ° Π°Π½ΡΠΈΠΌΡΠΊΡΠΎΠ±Π½ΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ. ΠΡΡΠ°Π½Π½Ρ ΠΏΠ΅ΡΠ΅Π²ΠΈΡΡΡ Π°ΠΊΡΠΈΠ²Π½ΡΡΡΡ ΡΠ΅ΡΠ΅ΡΠ΅Π½Ρ-ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡΠ² Ρ Π²ΠΈΡΠ²ΠΈΠ»Π°ΡΡ Π±ΡΠ»ΡΡ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡ ΠΏΡΠΎΡΠΈ Π³ΡΠ°ΠΌΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΠΈΡ
Π±Π°ΠΊΡΠ΅ΡΡΠΉ
Recommended from our members
De novo assembly of the cattle reference genome with single-molecule sequencing.
BackgroundMajor advances in selection progress for cattle have been made following the introduction of genomic tools over the past 10-12 years. These tools depend upon the Bos taurus reference genome (UMD3.1.1), which was created using now-outdated technologies and is hindered by a variety of deficiencies and inaccuracies.ResultsWe present the new reference genome for cattle, ARS-UCD1.2, based on the same animal as the original to facilitate transfer and interpretation of results obtained from the earlier version, but applying a combination of modern technologies in a de novo assembly to increase continuity, accuracy, and completeness. The assembly includes 2.7 Gb and is >250Γ more continuous than the original assembly, with contig N50 >25 Mb and L50 of 32. We also greatly expanded supporting RNA-based data for annotation that identifies 30,396 total genes (21,039 protein coding). The new reference assembly is accessible in annotated form for public use.ConclusionsWe demonstrate that improved continuity of assembled sequence warrants the adoption of ARS-UCD1.2 as the new cattle reference genome and that increased assembly accuracy will benefit future research on this species
- β¦