1,620 research outputs found

    Optical Gain in Solids after Ultrafast Strong-Field Excitation

    Get PDF

    Single-shot carrier-envelope-phase measurement in ambient air

    No full text
    The ability to measure and control the carrier envelope phase (CEP) of few-cycle laser pulses is of paramount importance for both frequency metrology and attosecond science. Here, we present a phase meter relying on the CEP-dependent photocurrents induced by circularly polarized few-cycle pulses focused between electrodes in ambient air. The new device facilitates compact single-shot, CEP measurements under ambient conditions and promises CEP tagging at repetition rates orders of magnitude higher than most conventional CEP detection schemes as well as straightforward implementation at longer wavelengths

    Multiscale theory of turbulence in wavelet representation

    Full text link
    We present a multiscale description of hydrodynamic turbulence in incompressible fluid based on a continuous wavelet transform (CWT) and a stochastic hydrodynamics formalism. Defining the stirring random force by the correlation function of its wavelet components, we achieve the cancellation of loop divergences in the stochastic perturbation expansion. An extra contribution to the energy transfer from large to smaller scales is considered. It is shown that the Kolmogorov hypotheses are naturally reformulated in multiscale formalism. The multiscale perturbation theory and statistical closures based on the wavelet decomposition are constructed.Comment: LaTeX, 27 pages, 3 eps figure

    Electro-optic characterization of synthesized infrared-visible light fields

    Get PDF
    The measurement and control of light field oscillations enable the study of ultrafast phenomena on sub-cycle time scales. Electro-optic sampling (EOS) is a powerful field characterization approach, in terms of both sensitivity and dynamic range, but it has not reached beyond infrared frequencies. Here, we show the synthesis of a sub-cycle infrared-visible pulse and subsequent complete electric field characterization using EOS. The sampled bandwidth spans from 700 nm to 2700 nm (428 to 110 THz). Tailored electric-field waveforms are generated with a two-channel field synthesizer in the infrared-visible range, with a full-width at half-maximum duration as short as 3.8 fs at a central wavelength of 1.7 ¡m (176 THz). EOS detection of the complete bandwidth of these waveforms extends it into the visible spectral range. To demonstrate the power of our approach, we use the sub-cycle transients to inject carriers in a thin quartz sample for nonlinear photoconductive field sampling with sub-femtosecond resolution

    The emergence of macroscopic currents in photoconductive sampling of optical fields

    Get PDF
    Photoconductive field sampling enables petahertz-domain optoelectronic applications that advance our understanding of light-matter interaction. Despite the growing importance of ultrafast photoconductive measurements, a rigorous model for connecting the microscopic electron dynamics to the macroscopic external signal is lacking. This has caused conflicting interpretations about the origin of macroscopic currents. Here, we present systematic experimental studies on the signal formation in gas-phase photoconductive sampling. Our theoretical model, based on the Ramo–Shockley-theorem, overcomes the previously introduced artificial separation into dipole and current contributions. Extensive numerical particle-in-cell-type simulations permit a quantitative comparison with experimental results and help to identify the roles of electron-neutral scattering and mean-field charge interactions. The results show that the heuristic models utilized so far are valid only in a limited range and are affected by macroscopic effects. Our approach can aid in the design of more sensitive and more efficient photoconductive devices

    Π‘ΠΏΡ–Ρ€ΠΎ[Π±Π΅Π½Π·ΠΎ[Π΅]ΠΏΡ–Ρ€Π°Π½ΠΎ[3,2-с][1,2]оксатіїн-4,3’-Ρ–Π½Π΄ΠΎΠ»]-3-ΠΊΠ°Ρ€Π±ΠΎΠ½Ρ–Ρ‚Ρ€ΠΈΠ» 5,5-діоксиди: синтСз Ρ– вивчСння Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— активності

    Get PDF
    The development of medicines with several pharmacological activities, including the analgesic, anti-inflammatory and antimicrobial properties, is one of the challenging tasks of modern medicinal chemistry.Aim. To expand the range of novel spiro-condensed derivatives of 1,2-benzoxathiin-4(3H)-one 2,2-dioxide, and study the biological activity of the substances obtained.Results and discussions. The target compounds were synthesized as a result of the interaction of 1,2-benzoxathiin-4(3H)-one 2,2-dioxide, malononitrile and isatins. When using ethyl cyanoacetate the interaction appeared to be much more complicated and requires further research. The study of the biological activity has revealed the compounds with the analgesic properties and the antimicrobial effect against gram-positive strains.Experimental part. Two new 2-amino-2’-oxospiro[4H-pyrano[3,2-c][1,2]benzoxathiine-4,3’-indoline]-3-carbonitrile 5,5-dioxides were synthesized by the three-component reaction based on 1,2-benzoxathiin-4(3H)-one 2,2-dioxide. The anti-inflammatory activity was studied on the model of the carrageenan induced paw edema, and the analgesic activity was assessed on the model of the local inflammatory hyperalgesia. The study of the antimicrobial activity of the compounds obtained was performed by the agar well diffusion method.Conclusions. New spiro[benzo[Π΅]pyrano[3,2-c][1,2]oxathiin-4,3’-indolil]-3-carbonitrile 5,5-dioxides have been synthesized. The compounds obtained have revealed high levels of the analgesic properties and the antimicrobial activity. The latter exceeds the activity of the reference drugs, and has appeared to be higher against grampositive bacteria.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° лСкарствСнных срСдств с нСсколькими Π²ΠΈΠ΄Π°ΠΌΠΈ фармакологичСской активности, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π°Π½Π°Π»ΡŒΠ³Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹Π΅ свойства, являСтся ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π²Π°ΠΆΠ½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ соврСмСнной мСдицинской Ρ…ΠΈΠΌΠΈΠΈ.ЦСль. Π Π°ΡΡˆΠΈΡ€ΠΈΡ‚ΡŒ ряд Π½ΠΎΠ²Ρ‹Ρ… спирокондСнсированных ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… 1,2-бСнзоксатиин-4(3Н)-ΠΎΠ½ 2,2-диоксида ΠΈ ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… вСщСств.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΈΡ… обсуТдСниС. Π¦Π΅Π»Π΅Π²Ρ‹Π΅ соСдинСния Π±Ρ‹Π»ΠΈ синтСзированы Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ взаимодСйствия 1,2-бСнзоксатиин-4(3Н)-ΠΎΠ½ 2,2-диоксида, ΠΌΠ°Π»ΠΎΠ½ΠΎΠ΄ΠΈΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π° ΠΈ ΠΈΠ·Π°Ρ‚ΠΈΠ½ΠΎΠ². Π’ случаС использования этилцианоацСтата Π² качСствС ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π½ΠΈΡ‚Ρ€ΠΈΠ»Π° взаимодСйствиС оказалось Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π±ΠΎΠ»Π΅Π΅ слоТным ΠΈ нуТдаСтся Π² дальнСйшСм ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ. ИсслСдованиС биологичСской активности выявило соСдинСния с Π°Π½Π°Π»ΡŒΠ³Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠΌΠΈ свойствами ΠΈ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹ΠΌ дСйствиСм Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Π³Ρ€Π°ΠΌΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΡˆΡ‚Π°ΠΌΠΌΠΎΠ².Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ. Π”Π²Π° Π½ΠΎΠ²Ρ‹Ρ… 2-Π°ΠΌΠΈΠ½ΠΎ-2’-оксоспиро[4Н-ΠΏΠΈΡ€Π°Π½ΠΎ[3,2-с][1,2]бСнзоксатиин-4,3’-ΠΈΠ½Π΄ΠΎΠ»ΠΈΠ½]-3-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ» 5,5-диоксида Π±Ρ‹Π»ΠΈ синтСзированы с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Ρ€Π΅Ρ…ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π½Π° основС 1,2-бСнзоксатиин-4(3Н)-ΠΎΠ½ 2,2-диоксида. ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈΠ·ΡƒΡ‡Π°Π»ΠΈ Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΊΠ°Ρ€Π°Π³Π΅Π½ΠΈΠ½-ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΡ‚Π΅ΠΊΠ°, Π° Π°Π½Π°Π»ΡŒΠ³Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ локальной Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π³ΠΈΠΏΠ΅Ρ€Π°Π»Π³Π΅Π·ΠΈΠΈ. Π‘Ρ‹Π»ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ исслСдованиС Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠΉ активности ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… соСдинСний ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΈ Π² Π°Π³Π°Ρ€.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Π½ΠΎΠ²Ρ‹Π΅ спиро[Π±Π΅Π½Π·ΠΎ[Π΅]ΠΏΠΈΡ€Π°Π½ΠΎ[3,2-с][1,2]оксатиин-4,3’-ΠΈΠ½Π΄ΠΎΠ»ΠΈΠ»]-3-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ» 5,5-диоксиды. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ соСдинСния проявили Π°Π½Π°Π»ΡŒΠ³Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ свойства ΠΈ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ, которая ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² сравнСния ΠΈ оказалась Π²Ρ‹ΡˆΠ΅ Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Π³Ρ€Π°ΠΌΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ.Π ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠ° Π»Ρ–ΠΊΠ°Ρ€ΡΡŒΠΊΠΈΡ… засобів, Ρ‰ΠΎ Π²ΠΎΠ»ΠΎΠ΄Ρ–ΡŽΡ‚ΡŒ Π΄Π΅ΠΊΡ–Π»ΡŒΠΊΠΎΠΌΠ° Π²ΠΈΠ΄Π°ΠΌΠΈ Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— активності, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‡ΠΈ Π·Π½Π΅Π±ΠΎΠ»ΡŽΠ²Π°Π»ΡŒΠ½Ρƒ, ΠΏΡ€ΠΎΡ‚ΠΈΠ·Π°ΠΏΠ°Π»ΡŒΠ½Ρƒ Ρ‚Π° Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Ρƒ, Ρ” ΠΎΠ΄Π½ΠΈΠΌ Π· Π²Π°ΠΆΠ»ΠΈΠ²ΠΈΡ… завдань сучасної ΠΌΠ΅Π΄ΠΈΡ‡Π½ΠΎΡ— Ρ…Ρ–ΠΌΡ–Ρ—.ΠœΠ΅Ρ‚Π°. Π ΠΎΠ·ΡˆΠΈΡ€ΠΈΡ‚ΠΈ ряд Π½ΠΎΠ²ΠΈΡ… спірокондСнсованих ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… 1,2-бСнзоксатіїн-4(3Н)-ΠΎΠ½ 2,2-діоксиду Ρ– дослідити Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡ… Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Ρ‚Π° Ρ—Ρ… обговорСння. Π¦Ρ–Π»ΡŒΠΎΠ²Ρ– сполуки Π±ΡƒΠ»ΠΈ синтСзовані Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ– Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— 1,2-бСнзоксатіїн-4(3Н)-ΠΎΠ½ 2,2-діоксиду, ΠΌΠ°Π»ΠΎΠ½ΠΎΠ΄ΠΈΠ½Ρ–Ρ‚Ρ€ΠΈΠ»Ρƒ Ρ‚Π° Ρ–Π·Π°Ρ‚ΠΈΠ½Ρ–Π². Π£ Π²ΠΈΠΏΠ°Π΄ΠΊΡƒ використання Π΅Ρ‚ΠΈΠ»Ρ†Ρ–Π°Π½ΠΎΠ°Ρ†Π΅Ρ‚Π°Ρ‚Ρƒ як ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π½Ρ–Ρ‚Ρ€ΠΈΠ»Ρƒ взаємодія виявилася Π½Π°Π±Π°Π³Π°Ρ‚ΠΎ ΡΠΊΠ»Π°Π΄Π½Ρ–ΡˆΠΎΡŽ Ρ– ΠΏΠΎΡ‚Ρ€Π΅Π±ΡƒΡ” ΠΏΠΎΠ΄Π°Π»ΡŒΡˆΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ. ВивчСння Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— активності виявило сполуки Π· Π°Π½Π°Π»ΡŒΠ³Π΅Ρ‚ΠΈΡ‡Π½ΠΈΠΌΠΈ властивостями Ρ‚Π° Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡŽ Π΄Ρ–Ρ”ΡŽ ΠΏΡ€ΠΎΡ‚ΠΈ Π³Ρ€Π°ΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΈΡ… ΡˆΡ‚Π°ΠΌΡ–Π².Π•ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π° частина. Π”Π²Π° Π½ΠΎΠ²ΠΈΡ… 2-Π°ΠΌΡ–Π½ΠΎ-2’-оксоспіро[4H-ΠΏΡ–Ρ€Π°Π½ΠΎ[3,2-с][1,2]бСнзоксатіїн-4,3’-Ρ–Π½Π΄ΠΎΠ»Ρ–Π½]-3-ΠΊΠ°Ρ€Π±ΠΎΠ½Ρ–Ρ‚Ρ€ΠΈΠ» 5,5-діоксиди Π±ΡƒΠ»ΠΈ синтСзовані Π·Π° допомогою Ρ‚Ρ€ΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΎΡ— Ρ€Π΅Π°ΠΊΡ†Ρ–Ρ— Π½Π° основі 1,2-бСнзоксатіїн-4(3Н)-ΠΎΠ½ 2,2-діоксиду. ΠŸΡ€ΠΎΡ‚ΠΈΠ·Π°ΠΏΠ°Π»ΡŒΠ½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Π²ΠΈΠ²Ρ‡Π°Π»ΠΈ Π½Π° ΠΌΠΎΠ΄Π΅Π»Ρ– ΠΊΠ°Ρ€Π°Π³Π΅Π½Ρ–Π½ΠΎΠ²ΠΎΠ³ΠΎ набряку, Π°Π½Π°Π»ΡŒΠ³Π΅Ρ‚ΠΈΡ‡Π½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΎΡ†Ρ–Π½ΡŽΠ²Π°Π»ΠΈ Π½Π° ΠΌΠΎΠ΄Π΅Π»Ρ– місцСвої Π·Π°ΠΏΠ°Π»ΡŒΠ½ΠΎΡ— Π³Ρ–ΠΏΠ΅Ρ€Π°Π»Π³Π΅Π·Ρ–Ρ—. Π‘ΡƒΠ»ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ– дослідТСння Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡ— активності ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… сполук ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄ΠΈΡ„ΡƒΠ·Ρ–Ρ— Π² Π°Π³Π°Ρ€.Висновки. Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΎΠ²Π°Π½ΠΎ Π½ΠΎΠ²Ρ– спіро[Π±Π΅Π½Π·ΠΎ[Π΅]ΠΏΡ–Ρ€Π°Π½ΠΎ[3,2-с][1,2]оксатіїн-4,3’-Ρ–Π½Π΄ΠΎΠ»]-3-ΠΊΠ°Ρ€Π±ΠΎΠ½Ρ–Ρ‚Ρ€ΠΈΠ» 5,5-діоксиди. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– сполуки виявили високий Ρ€Ρ–Π²Π΅Π½ΡŒ Π°Π½Π°Π»ΡŒΠ³Π΅Ρ‚ΠΈΡ‡Π½ΠΎΡ— Ρ‚Π° Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡ— активності. ΠžΡΡ‚Π°Π½Π½Ρ ΠΏΠ΅Ρ€Π΅Π²ΠΈΡ‰ΡƒΡ” Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ рСфСрСнс-ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ–Π² Ρ– виявилася Π±Ρ–Π»ΡŒΡˆ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡŽ ΠΏΡ€ΠΎΡ‚ΠΈ Π³Ρ€Π°ΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΈΡ… Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–ΠΉ
    • …
    corecore