35,285 research outputs found
Spectral reflectivity of solid surfaces at low temperatures
Spectral reflectivity of solid surfaces at low temperature
A General Expression for Symmetry Factors of Feynman Diagrams
The calculation of the symmetry factor corresponding to a given Feynman
diagram is well known to be a tedious problem. We have derived a simple formula
for these symmetry factors. Our formula works for any diagram in scalar theory
( and interactions), spinor QED, scalar QED, or QCD.Comment: RevTex 11 pages with 10 figure
Orbital thermal analysis of lattice structured spacecraft using color video display techniques
A color video display technique is demonstrated as a tool for rapid determination of thermal problems during the preliminary design of complex space systems. A thermal analysis is presented for the lattice-structured Earth Observation Satellite (EOS) spacecraft at 32 points in a baseline non Sun-synchronous (60 deg inclination) orbit. Large temperature variations (on the order of 150 K) were observed on the majority of the members. A gradual decrease in temperature was observed as the spacecraft traversed the Earth's shadow, followed by a sudden rise in temperature (100 K) as the spacecraft exited the shadow. Heating rate and temperature histories of selected members and color graphic displays of temperatures on the spacecraft are presented
Searching for the most powerful thermonuclear X-ray bursts with the Neil Gehrels Swift Observatory
We searched for thermonuclear X-ray bursts from Galactic neutron stars in all
event mode data of the Neil Gehrels Swift Observatory collected until March 31,
2018. In particular, we are interested in the intermediate-duration bursts
(shell flashes fueled by thick helium piles) with the ill-understood phenomenon
of strong flux fluctuations. Nine such bursts have been discussed in the
literature to date. Swift is particularly suitable for finding additional
examples. We find and list a total of 134 X-ray bursts; 44 are detected with
BAT only, 41 with XRT only, and 49 with both. Twenty-eight bursts involve
automatic slews. We find 12 intermediate-duration bursts, all detected in
observations involving automatic slews. Five show remarkably long
Eddington-limited phases in excess of 200 s. Five show fluctuations during the
decay phase; four of which are first discussed in the present study. We discuss
the general properties of the fluctuations, considering also 7 literature
cases. In general two types of fluctuations are observed: fast ones, with a
typical timescale of 1 s and up and downward fluctuations of up to 70%, and
slow ones, with a typical timescale of 1 min and only downward fluctuations of
up to 90%. The latter look like partial eclipses because the burst decay
remains visible in the residual emission. We revisit the interpretation of this
phenomenon in the context of the new data set and find that it has not changed
fundamentally despite the expanded data set. It is thought to be due to a
disturbance of the accretion disk by outflowing matter and photons, causing
obscuration and reflection due to Thompson scattering in an orbiting highly
ionized cloud or structure above or below the disk. We discuss in detail the
most pronounced burster SAX J1712.6-3739. One of the bursts from this source is
unusual in that it lasts longer than 5600 s, but does not appear to be a
superburst.Comment: Accepted for publication in Astronomy & Astrophysics, 29 pages, 12
figures. Version 2 has 3 bursts from IGR J17480-2446 re-identified to 2 from
Swift J174805.3-244637 and 1 from EXO 1745-24
Excimer lasers
The results of a two-year investigation into the possibility of developing continuous wave excimer lasers are reported. The program included the evaluation and selection of candidate molecular systems and discharge pumping techniques. The K Ar/K2 excimer dimer molecules and the xenon fluoride excimer molecule were selected for study; each used a transverse and capillary discharges pumping technique. Experimental and theoretical studies of each of the two discharge techniques applied to each of the two molecular systems are reported. Discharge stability and fluorine consumption were found to be the principle impediments to extending the XeF excimer laser into the continuous wave regime. Potassium vapor handling problems were the principal difficulty in achieving laser action on the K Ar/K2 system. Of the four molecular systems and pumping techniques explored, the capillary discharge pumped K Ar/K2 system appears to be the most likely candidate for demonstrating continuous wave excimer laser action primarily because of its predicted lower pumping threshold and a demonstrated discharge stability advantage
A Burst and Simultaneous Short-Term Pulsed Flux Enhancement from the Magnetar Candidate 1E 1048.1-5937
We report on the 2004 June 29 burst detected from the direction of the
Anomalous X-ray Pulsar (AXP) 1E 1048.1-5937 using the Rossi X-ray Timing
Explorer (RXTE). We find a simultaneous increase of ~3.5 times the quiescent
value in the 2-10 keV pulsed flux of 1E 1048.1-5937 during the tail of the
burst which identifies the AXP as the burst's origin. The burst was overall
very similar to the two others reported from the direction of this source in
2001. The unambiguous identification of 1E 1048.1-5937 as the burster here
confirms it was the origin of the 2001 bursts as well. The epoch of the burst
peak was very close to the arrival time of 1E 1048.1-5937's pulse peak. The
burst exhibited significant spectral evolution with the trend going from hard
to soft. During the 11 days following the burst, the AXP was observed further
with RXTE, XMM-Newton and Chandra. Pre- and post-burst observations revealed no
change in the total flux or spectrum of the quiescent emission. Comparing all
three bursts detected thus far from this source we find that this event was the
most fluent (>3.3x10^-8 erg/cm^2 in the 2-20 keV band), had the highest peak
flux (59+/-9x10^-10 erg/s/cm^2 in the 2-20 keV band), and the longest duration
(>699 s). The long duration of the burst differentiates it from Soft Gamma
Repeater (SGR) bursts which have typical durations of ~0.1 s. Bursts that occur
preferentially at pulse maximum, have fast-rises and long X-tails containing
the majority of the total burst energy have been seen uniquely from AXPs. The
marked differences between AXP and SGRs bursts may provide new clues to help
understand the physical differences between these objects.Comment: 24 pages, 4 figures, submitted to the Astrophysical Journa
Seasonal variations in Greenland Ice Sheet motion : Inland extent and behaviour at higher elevations
Peer reviewedPreprin
- …