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SPECTRAL REFLECTIVITY OF SOLID SURFACES

AT LOW TEMPERATURES

by
M. C. Jones and D. C. Palmer

ABSTRACT

In Part I experimental data are presented for the normal spectral

absorptivity of the transition 'Metals nickel, iron, platinum and chro-

mium at both room and liquid helium temperatures in the wavelength l

range 2. 5 to 50 µ m.	 The absorptivity was derived from reflectivity

measurements made relative to a room-temperature vapor-deposited,

-z gold reference mirror. 	 The absorptivity of the gold reference mirror

was measured calorimetrically using infrared laser sources. 	 Inves - 

tigation of various methods of 'sample surface preparation resulted in

the choice of a vacuum annealing process as the final stage.

' Results are compared to calculations based on a 2-band model.

r'The first band is identified with the s-electrons but it is necessary to

'	 . determine material parameters for the second band empirically. 	 The

temperature and wavelen th dependence of the absor tivities of nickelP	 g	 P	 P `

and iron can be represented only qualitatively,but for platinum quite

well if second band parameters are assumed to be temperature inde-

pendent.	 The Anomalous Skin Effect theory gives a better account of ;.

the temperature dependence than the classical or local theory and in all
r	 ..

F
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cases agreement is improved if the relaxation time for the s-electrons

is calculated according to the theory of the quantum mechanical inter-

action due to Holstein and Gurzhi. In the case of chromium no

comparison with the theory is made since an absorptivity maximum

at about 10 µm appears in the low temperature results. This feature

has been identified ,previously by others as due to the onset of antifer-

romagnetism. The .absorptivity in the region of the maximum is the

same at 7.5 K as at7b:5K.

In Part II the same technique is used to measure the normal

spectral reflectivity of an indium antimonide sample at 10. 5 K The

data are fitted to a classical reflectivity function from which an

accurate value for the reststrahlen frequency is obtained. A discussion
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i PART I. THE INFRARED ABSORPTIVITY OF TRANSITION METALS

AT ROOM AND LOW TEMPERATURES

a 1.	 Introduction

Knowledge of the infrared optical properties of metals at low temp-

eratures is important in the thermal balancing of spacecraft and in a
t

variety of cryogenic insulation problems both of the conventional type
,t

and those involving multiple layers of polished metal alternating with a

dielectric ("multilayer" insulation),	 A previous survey 	 that
ti

little data existed in the literature.	 Furthermore, the available datar
}

were usually at short wavelengths (s 10 u m), were often in the form of

optical constants and were rarely available for the more common struc-

tural metals which are usually transition metals and their alloys.	 In 3	 ,

f ' addition, data at room temperature were often not available for a sam-

ple whose low temperature properties were given.	 In contrast many
f'

studies of a variet	 of metals at room temperature have been availableY	 P

in the literature for a- number of years, although, here too, long wave-

lengths have been neglected owing to instrumentation difficulties. 	 The

. pre sent .paper is an outcome of the above noted survey.	 In it an attempt

is made to rectify some of these shortcomings by reporting a study of y

the transition metals--iron, nickel, platinum, and chromium-.-at room

temperature and at about 9 K.	 The wavelength range is from 2. 5 u m

to 50. U m

t
t_
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In the experiments to be described the property measured was the

normal, spectral reflectivity of a sample at room or liquid helium

temperature relative to that of a known reference sample (see figures

1 and 2). The latter was a high quality vapor deposited gold film, which

was maintained at room temperature at all times. In order to obtain the r

absorptivity, which is the property of most interest in application, the

data were first converted to absolute reflectivities; then, by definition

the normal- absorptivity for a perfectly specular surface is (1. 0 - normal

absolute reflectivity).
i

The infrared absorptivity of metals is usually interpreted in terms

of the interaction of an electromagnetic wave with the free electrons of

the metal. The well known Drude single electron theory 	 been	 ' 4'

applied with varying degrees of _success to noble and alkali metals at
s;

room and higher temperatures. Except at very short wavelengths (say,

less than 4 um) the correct wavelength and temperature dependence is

obtained if the relaxation time introduced in the theory is the d, c_.

relaxation time obtained from electrical conductivity measurements. 	 ': 4

However, in all but a few exceptional cases the relaxation time which 	 r

fits the data is somewhat less than the literature value for the pure

metal.	 J

For pure metals at low temperatures it is also well established

that the Drude theory must be modified to account for the long free paths

2	 -
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of the electrons if the correct wavelength and temperature dependence

is to be obtained. The resulting Anomalous Skin Effect theoryC3' 41 is

mathematically formidable but computations are readily made on a com-

puter. The correctness of this approach has been well verified for

[5, 6, 7^	 91It is also well establishedCg'monovalent metals.	 that a sec-

ond low temperature effect occurs, namely, the relaxation time be-

comes frequency dependent due to a quantum mechanical interaction

between photon, phonon,and electron and the relaxation time can only

be related to the d. c. relaxation time at frequencies below that come-

10, 1,1 ]	 esponding to the Debye .temperature 	 G. e. uuo =	 where 6 is the
l

Debye temperature, 	 _ Planck's constant divided by 217and k = Boltz-

mann s constant).	 Above this frequency the excess of absorptivity over

that which would be calculated from the d. c. relaxation time may be
i

referred to as quantum absorption.

The transition metals, transition metal alloys, and some other ?

polyvalent metals are not adequately treated by the Drude Single Elec-

tron theory.	 However, a very satisfactory description of their optical

properties at room and high temperatures is based on a generalization f

of the single electron theory, the two band model, applied . to optical
x
t

112,-13]properties by Roberts. 	 The theory is in effect the same gen-

eralization as -has been used for the interpretation of other transition

metal properties, namely, the Hall effect, magnet rg-sista, ce,and x

z_

3



[14]thermoelectric power and, as pointed out by Wilson,	 is the simplest
r

approximation which takes into account the anisotropy of the Fermi

surface.	 This latter is assumed spherical in the Drude theory and the

Anomalous Skin. Effect theory. 	 The theory amounts to introducing a

second conduction band with different effective mass and relaxation
,f

time.	 The distinguishing feature of the transition -metals is that they

.. do not show a plateau in their absorptivity as a function of wavelength

in the near infrared, a property clearly exhibited by monovalent metals
,,

and predicted by the Drude theory.

The Roberts theory' has been very useful in predicting and corre-

lating the absorptivities or emissivities_of transition metals as a

4 function of both temperature and wavelength at room and high _tem-

[15 ]peratures.	 Two approaches have been used.	 In the first	 the high

temperature absorptivity has been predicted with moderate success

from'the Roberts theory using parameters applicable at room tempera-
f

ture, but requiring always that the equations should give the correct

experimental d. c. conductivity in the limit of zero frequency.	 The
k'.

[16
second--approach	 recognizes that the layer of material at the surface

in which the interaction with the electromagnetic wave occurs may not

be characteristic of the pure annealed bulk material through surface

work hardening.	 Therefore no attempt is made to associate parameters,

with known physical properties of the bulk material.- Instead all

G 4,
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parameters are determined by the absorptivity data alone insofar as is

possible: not all parameters are uniquely determined by the absorptivity

data over a limited wavelength range. The latter approach is therefore

an engineering correlation and lends itself well to the description in

terms of absorptivity of commercial surfaces, impure metals, or

surfaces which have received no special treatment to remove the work

hardened layer.	 It has the disadvantage that the parameters obtained
a

have somewhat obscure physical significance. i<

The purpose of the present study was to investigate the absorptivity

of transition metals- at room and low temperatures to determine whether

a systematic procedure could be found for their prediction, which would

be at the same time firmly based on physical principles. 	 To this end'

it was decided to apply the first approach given above to room and low, '
4

temperatures and to confine experiments to pure annealed metals with

high quality surfaces representative in properties of the bulk material,

If this should lead to a fruitful result.the extension to less well charac-

d
terized surfaces could easily be made using the second approach.

2.	 Preparation of Samples
:

In preparing a metal surface for optical or infrared property

s	 '^# measurements there are two basic approaches for obtaining a surface

representative of pure annealed bulk material. 	 The first is by vapor
}

deposition of a thick film on a flat glass or quartz substrate. 	 The

l 5
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second is by appropriate treatment of the mechanically polished surface

of a piece of pure metal. While it has been demonstrated that at room

temperature the former approach gives rise to some of the highest

reflectivities yet observed for noble metals, [171 and this in turn has

been attributed to the absence of lattice distortions normally caused by

mechanical polishing, there are, nevertheless, some objections to the

use of vapor deposited films. Firstly, at room temperature measured

conductivities and densities differ significantly from those for pure

bulk material even for high quality ultra-high-vacuum films. Secondly,

.for a thick opaque- film which is still thin enough to conform to the
o	 ;Y

smoothness of the substrate (typically —2.000 A), the mean free path of

the electron at liquid helium temperatures may greatly exceed the film°
t

thickness. In this case the effective relaxation time of the electrons is
f

a function of the film thickness and will thus modify the observed reflec-

tivity or absorptivity. Such observations would be extremely difficult

to interpret. Hence in this work the second approach has been taken

and efforts directed toward eliminating work-hardening at the surface. 	 x'

The samples were prepared from highly purified, polycrystalline

discs about 2 - mm	 -	 ,c	 ut 5	 m .diameter and 2 3 mm th^,ckne . s . The manufac --	 -	 -

ture-r's stated purities were as follows: nickel 0. 999.97, iron 0._9999.

platinum 0. 99992' and chrornium 0 .̀ 99996. On reception the _samples

were first annealed for 30 minutes under a-vacuum of 10
-6

 to 10 e 
tors
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At 14221 K. An evaluation of various methods of polishing was then

carried out on nickel in order to select the best technique which was then

to be applied to all samples. The criterion was the room-temperature

near-infrared reflectivity since ample evidence exists [18, 191 to the

effect that the reflectivity increases significantly when the work-

hardened layer caused by mechanical polishing is removed. On the

other hand it is also important to maintain flatness and smoothness

especially in our measurements where the sample forms a mirror in

the imaging system of the spectrophotometer. Previous workC191.

indicated that for the apparatus used here, using the method of

Newton's rings, the sample'should be flat to within 5 fringes over a

diameter of 1 cm. The flatness achieved here has been of the' order of

l fringe over a 1 cm diameter. As for smoothness the r. m. s. peak to

valley roughness should be a good deal less than the wavelength of the

f

j
r

i j
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ii) Mechanical polishing to high mirror finish followed by

electropolishing at low current density (0. 03 to 0. 1 Afcros;

electrolyte as in i) with use of polishing wheel. In this

case the electrolyte was continuously dripped onto a polish-

ing cloth mounted on a brass metallographic polishing wheel

t rotating at 160 r. p. m. The polishing wheel was made the

cathode and the sample the anode.

iii)Mechanical polishing followed by vacuum annealing at tem-

peratures and times which according to the literature should 	 j
[21give complete re crystallization (673 K for 1 hr.	 For	 !.

iron, platinum, and chromium appropriate re crystallization 	 f.

j[20, 22, 23data is also available.

Mechanical polishing was with successively finer grades of diamond

and alumina abrasives and was always done by hand either on a cast

iron lapping block or on polishing . paper. Preparation was completed ;^	 a

by washing with detergent solution and rinsing with distilled water.

Technique_i) was rejected without further testing because even rt 	 i;
F

after several variations in procedure and cathode geometry the surface'	 f.

}	 lost its specularity. This is an essential surface property. for 'alignment

?	 of the reflectivity apparatus described below apart from considerations 	 }

of surface smoothness referred to above. Technique ii) was applied

for times and current densities which would have removed several Wm

8



I

j

r

w

of surface material. The resulting surface was sufficiently specular

but slightly. irregularly polished to the eye; the degree of polishing

appeared to depend on 'orientation of crystallites at the sample surface.

Technique iii) produced a good specular surface. It is important in

using this technique to keep the temperature as close to the 1 hr.

recrystallization temperature as possible; it was observed that vacuum

annealing at about 1000 K gave rise to thermal etching at the grain

boundarie s .

The room-temperature near-infrared reflectivities by techniques

ii) and iii) are 'compared in figure 1 on the basis of which iii) was

[31Ichosen for all other samples. It is noteworthy that Biondi 	 com-

1

E

^5	 F
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The reference sample was produced by vapor deposition of 99. 999%

pure gold at 300 Aper second in a vacuum of 8 X 10 s torr. The total
0

thickness was 1500 A and was applied on a flat glass substrate which had

been precoated with a 70 Afilm of nichrome for improved adherence.

This sample was selected over several others of similar thickness

which had been deposited at higher vacuum (10
-8

 tors) but at lower

deposition rates (1 to 16 A/sec.) since its reflectivity at both 2. 5 and

^c
4. 0 µ m was higher when compared with them at room temperature in

r

the apparatus described below. 	 The absolute determination of the room
y

temperature absorptivity of the gold reference sample at selected t

laser frequencies is described in section 4.

3.	 Experimental Apparatus and Procedures }	 x

3-. 1 Optical and Electronic Components

A commercialratin	 spectrophotometer  was used havin 	 a normg	 gg y

nal wavelength range from 1-700 µm.: For these measurements the +

instrument was fitted with reflectivity optics which direct the source

energy upwards onto the inverted horizontal_ sample at an angle of in- is

cidence of less- than 9'. 	 A plan of the spectrophotometer with reflecti-

'i
vity optics and cryostat incorporated is shown in figure 3.	 The sample r

is positioned at a conjugate image point of the.monochromator entrance

slit.	 The source used was a globar throughout; the detector was a'

12	
. -
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thermocouple at wavelengths up to 15 pm and a Golay cell for longer

wavelengths. 	 The detector signal was amplified by a lock-in amplifier,

+ the reference signal for which was taken from a breaker on the chopper

shaft.	 The amplified signal was read out to four significant digits on a

g digital voltmeter.

3 2 The Cryostat

For both room and low temperature measurements the sample was 	 j

mounted in the stainless steel cryostat shown in figure 4.	 This cryostat

119 1was a modified form of one described previously. 	 In the earlier	 ^<

version both sample and reference were held at the same temperature

while here the reference was maintained at all times at room temper-

ature.
a

The cryostat was designed specifically for these measurements.

.	 ' The requirements were to be able to _position the reference in the appro-

priate plane of the spectrophotometer, then, after recording the signal

for a few minutes, to replace it quickly with the sample in precisely the

same plane while maintaining at all times a high vacuum around the 	 ?

ample.	 Interchanging sample and reference was effected by rotating

the entire inside contents of the cryostat (i.e. the liquid helium vessel

fi B and the liquid nitrogen radiation shield C) by means of the handle H

i
and reduction gears I and J.	 This turned the collar E which rode on

r the 'ball.-race F and was sealed to the stationary outer jacket of the

F

,

14
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cryostat by the "0" ring G. It was then possible to position either the

sample S, or the reference R over the cesium iodide window K through

which the spectrophotometer beam entered and left. The window K was

inclined at 14° to the horizontal to prevent energy reflected from the

window surface from arriving at the monochromator slit. Corrections

to the sample plane were achieved by tilting and raising or lowering the

whole cryostat,which was supported in the spectrophotometer by a heavy

aluminum collar attached to which were three legs resting on the spec-

trophotometer housing. 	 The legs terminated in screws with which the

{ predetermined adjastment was made. 	 (see 3. 4) 

The high vacuum required- was obtained by use of an ion pump of

a;8 liters /sec pumping speed attached directly to the -cryostat vacuum..:.
•	 -

jacket.	 With it a vacuum of 5 x 10 
a Corr could be maintained through-

'

out low temperature experiments even while interchanging sample and
j

t
f

reference.	 An added advantage of an ion pump is that _sample contamin- 1.	 .

ation through backstreaming of pump oils is not a problem and there i

no need for an intervening cold trap. f

The entire cryostat assembly in position in the spectrophotometer #y

can be seen in the photograph, figure 5.	 The supporting collar, legs,.- +

{ and adjusting screws are 'clearly evident..

w  16



Figure 5. Photograph of Cryustat Installed in Spectrophotorneter
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a 3. 3 Sample Mounts

The need to place sample and reference side by side inside the
ti

., cryostat, the sample at liquid helium temperature and the reference at

room temperature, presented a somewhat difficult design problem be-

cause large temperature gradients were inevitable.	 The arrangement

shown in figure 6 was used in this experiment. 	 In this figure parts are

identified by the same letters as in figure 5.

The sample S to be investigated had its back side ground flat and

s was held against the copper post L, also ground flat, by a screw cap. k

}

The post L was silver soldered into the copper plate P which was

screwed to the copper base of the helium vessel. 	 The sample was

surrounded by a gold plated radiation shield B' at liquid helium tem-

perature and a second one C' at liquid nitrogen temperature except for r	 x
-

an aperture to permit entry and exit of the spectrophotometer beam.

C The sample temperature could be measured by the thermometer T

`t which was a germanium resistance thermometer inserted into a hole

t in the post L..	 The thermometer leads were well tempered around L.

The reference was mounted on the platform formed by the nitrogen r

temperature radiation shield C':	 It was in the form of `a coated glass F

'y plate held in a brass slide mounted by three spring; loaded screws to the

intermediate nylon platform N.	 This in turn was held against C' by a

single nylon screw, the area of contact being kept to a minimum by two

f

f 18 t
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Figure b. Details of Sample Mounts
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which was varnished to the back of thenal of the thermocouple T . C .

slide and well tempered to it.

3. 4 Alignment Procedure

,

knife edges machined on the nylon.. By these means good thermal iso-

lation from C' was maintained while at the same time the reference was

sufficiently rigidly supported •for optical purposes. The reference was

maintained at room temperature by the electrical heater W, wound on

the brass slide, with current from a controller driven by the error sig-

Replacing the reference by the sample in precisely the same plane

required a preliminary procedure by which the settings of the adjusting

screws of the cryostat were determined for both reference and sample

in position. It was found that the settings depended somewhat on the

temperature of the sample, but for liquid helium temperature it was

determined that the alignment procedure could be performed at liquid

nitrogen temperature.



1

i

sample was brought into position were then determined by autocollima-

1 tion with the aid of a cathetometer telescope and illuminated cross- 	 !:

f hairs as illustrated in figure 7. 	 The adjusting screws were fitted with

' pointers which enabled precise repositioning of the cryostat for the
G

experimental run.	 The adequacy of the procedure was checked by
I

comparing the signals from two gold samples at room temperature. 	 }
^<

1

a These samples had been produced simultaneously-side by side in a

vapor deposition apparatus.	 They were found to give identical signals.

In fact it was found that the tilt correction as described above could be

determined to considerably greater precision than was required to

avoid error in the relative reflectivity of a sample
i

3. 5 Data Recording Procedure

Data reading was relatively straightforward once the sample and

reference were mounted, the cryostat evacuated and cooled to liquid`

nitrogen temperature,and the alignment procedure completed.	 The

spectrophotometer was allowed to warm up for several hours and a
,

I'	 r steady flow of dry nitrogen gas through the spectrophotometer was put

into effect about 1 hr. before an intended run^to reduce the water vapor

V concentration. When the detector signal appeared to be steady the cryostat

was cooled down further by transfer of liquid helium. For room tempera-
t

ture runs the helium vessel,was filled with tricllorofluoromethane in

order to stabilize the temperature. 	 Reflectivity data were taken point

21
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by point rather than by scanning,since in this way the reference signal

u	 could be checked immediately before and immediately after the sample

signal to determine if any signal drift had taken place. The signal in -

each case was observed for a few minutes after becoming steady with a

filter time constant of 30 or 100 sec to average out noise. In this way

repeatability of the relative reflectivity could be held to f 0. 1% at short

wavelengths to f 0. 2% at the longer- wavelengths. Points were discarded
r x

if the reference signal recorded after the sample signal had drifted from

its initial value by more than this amount. This criterion set the upper 	 j.

wavelength limit to the data taken with the spectrophotometer,since for 	 'R
y	 ;_

wavelengths greater than about .50 µ m no such signal stability could be

obtained.	 1
r

l-	 4

In addition to sample and reference_ signal the true instrument zero

was recorded at each amplifier gain, since, particularly with the Golay

cell, - a spurious signal due to chopper vibrations often accompanies the 	 {

optical signal.

With the procedure outlined, the relative reflectivity of the sample
r

could be determined at aarticular wavelength in about 5 minutes. _OneP	 - 
S

charge of liquid helium (1, life 	 3 to 4-hours of operation.
i

,

I
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4. Determination of the Room Temperature Absorptivity of the

Gold Reference Mirror

4. 1 Laser Calorimeter

For the measurement of the absorptivity of the gold reference

mirror a calorimeter was built for use with infrared lasers that were

available. These lasers were:
1

i) A COa laser having a strong emission at 10. 6 µ m This

laser has been described many times in the literature [24
. ,

and is probably the most intense known for a given size.

The particular one used here was 0. 5 m in length and had
A



' 3

these measurements a collimated beam of about 3 mm

diameter was produced after passing through a second
f_

Tens of 24 mm focal length.

[261iii) An HCN	 laser with a strong emission at 337 pm and

a weak emission at 373 µm.	 Again only the stronger

emission was of suitable power, namely 50 mW.	 This

laser was also 8 m in length and was 150 mm in diameter.
.: !

Similar polyethylene lenses were used to produce a
3	 u

!

parallel beam of 3 mm in diameter. }

The calorimeter itself is illustrated in.figure 8. 	 The laser

beam could either be absorbed on the gold mirror, which was cemented

on the outside of a thin spherical copper shell (0. 10mm thickness), or i'	 A<

it could be absorbed inside the shell by rotating with the plastic knob to !

place a small inlet cone in the beam. 	 The copper shell and cone were

painted inside with 3 coats of a flat black paint known as NEXTEL*; the ; 	 r

shell was gold plated on the outside. 	 In an intermediate position the }

laser beam impinged on a s=mallcopper plate cemented to the shell and 1

coated with NEXTEL in the same manner as the shell interior. 	 With

u this the absorptivity of the paint could be ' determined for use in assessing ,
Minnesota Mining and Manufacturing Co.

The use in this paper of trade names of specific products is essential to
a proper understanding of the work presented.	 Their use in no way
implies approval,.- endorsement, or recommendation by NBS.
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the absorption efficiency of the shell cavity.

The calorimeter shell was supported by a nylon pin mounted in

a copper base. Except for holes to permit entry of the laser beam the

I
	 shell was completely enclosed by a brass protecting shield to keep down

r
perturbations from stray radiation and drafts. 	 A second draft eliminator

around this . provided additional protection. 	 A shaft on the copper base

fitted into an aluminum base and permitted rotation of the -calorimeter

F

without disturbing its position relative to the laser optics on an optical

` bench.	 By setting the plastic knob off from the calorimeter with a

length of stainless steel tubing,this could be done without serious tem-

perature perturbations from the hand.

When a steady temperature difference exists between the calori-

meter shell and base this difference is an indication of the power being
i

absorbed.	 The shell temperature was indicated b	 three thermistor s 	 'Fp	 Yy	
A' ;

t

,^ Tl, T2, and T3 connected in series; two were cemented to the shell and
I f

one just at the point where the nylon pin was attached.	 In this way anJ	 p. _

raverage shell temperature was indicated.	 Three similar matched

thermistors T4, T5, and T. in.series also were cemented in holes in

F	 ;, the copper base. 	 A thin aluminum shield protected these from direct	 ^.
.^ t

T impingement by stray radiation. 	 Each set of three thermistors formed

,r one arm of a bridge which could be balanced when the shell and base

had come to thermal equilibrium.	 In order to calibrate the calorimeter

-
27



were cemented in holes, the first in a brass boss soldered to the top

of the shell and the second in a hole in a similar boss at the base of the

shell; the latter served also to attach the nylon pin. In this way the

calorimeter could be tested to ensure that its response was independent

of the point at which power was absorbed on the shell. 	 The calibration

is represented in: figure 9 bar a plot of the reciprocal of the responsivity

in mW /mV versus the bridge signal at 5 minutes after start when the

' bridge was driven by.2. OOOV. }

The calorimeter illustrated was in fact a second model with

Y many improvements incorporated on the_ basis of experience with a

prototype.	 These include the use of multiple thermistors, the inlet 	 }
4

t cone, the thermometer shield, a lighter shell, and the NEXTEL paint°

which was far superior to a black copper oxide coating used initially. ,r

Much effort was expended on ensuring that substantially all the 	 .f

> beam radiation 'could be absorbed in the shell.	 This is the more dif-

ficult the longer the wavelength • of the radiation because almost every

' theknown becomes less black te longer the.wavelength. 	 In develop-p_

` ing the final design the power indicated by the calorimeter was frequently

compared with that indicated; by a faster responding but less sensitive

` power* meter developed at. the National Bureau of Standards specifically

for infrared laser power measurements.	 In the final design the powers

28
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i

indicated by the two instruments were always within' 5% of each other

and no trend with wavelength was observed which, on account of the

wavelength dependence of the paint, might have indicated a serious

departure from blackness.

Based on 'a simple ' spherical cavity without the cone and on the

measured ratio of power absorbed by the paint to that absorbed by the

cavity, a lower limit of 99. 3 10 can be set for the cavity absorption

efficiency at 337 um. Now the use of the cone can only enhance this

efficiency because it is truncated short of the point at which an extreme

axial ray would be turned back aftermultiple reflections; it provides a
i`

strongly divergent beam inside the cavity and, being set off axis, no

specular ray could be reflected straight back out again after encounter-

ing the shell wall. It is therefore firmly believed that, to an accuracy
f

^
'

of a, few percent the cavity can be assumed to be black and no 	stem- ^	 Y	 Y ^-
s

atic correction needs to be applied in data reduction on this account.

t Some of the important calorimeter parameters were as follows:

.. Time constant 2 min.
f

r.

Responsivity _' .0. 83 to. 0. 87 V /W

Detectivity 0.'05 mW

Temperature rise 0. 022 °C /mW

itr
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In making measurements the calorimeter was placed on an

optical bench on which the laser rested and was set relative to the laser

outlet optics such that the beam was centered on sample or cavity after

passing through a stop of smaller diameter than the framing aperture

of the protective shield.	 Heat sensitive paper was used in all cases to

locate the beam and center it.	 When directed onto the gold sample the
i

t'

reflected beam was also located and the angle of incidence carefully

chosen so that the reflected 'energy was frustrated by the stop. 	 The

beam reflected from the stop was also directed away from calorimeter.
N

After allowing the calorimeter to come to equilibrium laser"

power was admitted by opening a shutter.	 Readings of the out-of-:balance

of the bridge were taken with time and,instead of waiting for steady state x`	 a

to be achieved,the power was determined from the reading at 5 minutes {+

- after start, as had been done for calibration also„ 	 With the time con-

<stant stated this was sufficient to achieve 92% of the steady state reading

and was short enough on the other hand to minimize the contribution

I
i

from long term drift.

4.2 Calorimeter Results

The absorptivity of the sample was calculated as the ratio of the

power absorbed when the laser .beam impinged on the sample-to that t'{
when it was absorbed in the cavity.	 The. results for the gold and the

NEXTEL paint are given in Table 1. 	 For the gold each value represents

31
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Ix
' Table 1.	 Results of Room Temperature Measurements

o^ Absorptivity with Laser Calorimeter.

wavelength	 absorptivity	 uncertainty	 absorptivity
u M.	 of gold	 of NEXTEL

10.6	 0.01160.0008	 0. 89

28.0	 0.0139	 ±0. 0009	 0.96

337	 0.0111	 ±0.0011	 0. 67

Average absorptivity of gold reference mirror 0. 0127
4

i

L

an average of several observations.	 The accuracy of the results is I

governed by the departure of the cavity from 10076, but more serious
3

was the problem of repeatability.- This arose from the long term drift

of the calorimeter, which was particularly important for observations î	 A

on the small- power absorbed by the gold (of the ord er of 1. 0 mW ), it

Usually, -after an hour's.time for equilibrating, the drift. of the out-of-

balance signal of the bridge could be held to within 10 uV in 5 minutes,

which corresponded to about 0. O1mW, or 1% of the power absorbed by .

the gold; however no assurance could, be gained that within the duration

of an observation the driftremained at this level. 	 The observed re-
f

pe:atability was from + 7 to ± 10 %.

-
P	

e	 _
The results are a Tittle surprising inthat the absorptivity. of

fd

.'' the gold at 28.0 urn is higher than at 10. 6 um; the Drude theory could-

not be fit to these data by any choice of material parameters. 	 This

32
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anomaly is not important as regards reduction of the transition metal 	 i
data to absolute absorptivities because the shift implied is within the

precision of those data. T:o , the accuracy -required it is sufficient to

treat the gold absorptivity as constant in the wavelength range from

2. 5 to 50 µm an thus a mean value of 0. 0127, or 0. 9872 for the

reflectivity, was assumed.

In comparing these results with those of other workers it is seen is
j [17]that they confirm the findings of Bennet and Ashley	 that the deposi-,z

tion vacuum is all important for lowest absorptivity. 	 Thus, in the

. region of essentially constant absorptivity Bennet and Ashley found 3	 '

a value of 0. 0060 for samples deposited at 10 	 torr, while the optical

constants of _Padalka and Shklyarevskii	 imply a value of 0. 0106, for
-

samples deposited at 10 a torr in good agreement with the present data. f

5.	 Experimental Results

5. 1 Data Reduction and Presentation v

' Let Y	 and Y  be the digital voltmeter readings for sample and

r.;t reference respectively and let Yo be that obtained with the beam
,

(.` blocked.	 Let A6 be the absorptivity of the gold reference. 	 Then the

absorptivity of the sample A. is given by the data reduction formula:

YI	YO
6	 c

L.

j

i

F 33	 u
s



The results for the absorptivities of the nickel:, iron, platinum and

chromium samples are given respectively in figures 10, 11, 12 and 13

plotted versus wavelength in µm.	 The results are tabulated in Tables

2 to 5.	 The curves shown in the figures were calculated from theory

and will be discussed in section 6.

5. 2 Experimental Errors

.	 ? The precision of the data is determined by instrument drift and was
7

-	 +	 4 held to f 0. 1 % in reflectivity below 15 µm and to f 0. 2% between 1, 5 and

50 µm

Systematic errors arise from the non-linearity of the detector-

amplifier -digital voltmeter- system and from spectral impurity of the

spectrophotometer. 	 The former has been checked by measuring the

transmittances of dielectric slabs individually and in pairs. 	 The pro-
-

duct of individual transmittances was found to be within 0. 3% of the

? transmittances measured in pairs.

The spectral purity is a function of wavelength and is primarily <<

due to imcomplete filtering of higher order radiation; the' monochro-
r

._ 1

meter operates in first order. This affects the measured value of

reflectivity only insofar as , sample and reference differ inreflectivity

at the wavelength in question and at the _wavelength of the higher order

stray radiation.	 Thus taking the manufacturer's specification of less

4 than 1% stray radiation. and assuming - it to be entirely second order,

a
34
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li.

Table 2.	 Absorptivity of Nickel Sample

300 K 8.0 K
Wavelength Absorptivity Wavelength Absorptivity

'	 ,^ (µ m) (w m,)

2.48 0.2000 2.48 0.1987
2.68 0.1851 2.68 0.1821'
3.21 0.1508 3. 21 0.1481 
3.68 0.1270 3.66 0. 1212
4.15 0.1083 4.15 0.1014

4.53 0.0956 4.53_ 0.0862
4. 99 0.0825 4.99 0.0728

l 5.53 0.0713 5.53 0.0594
6.23 0.0588 6. 23 0.0471

.	 IA 6.62 0.0517 6.62, 0.0432

7.35 0. 0456 7. 35 0.0366
7. 79 0.0419 7.79 0.0341
8.30 0.0390 8.30 0.0305
9.56 0.0341 9.56 0.0267

10.41 0.0315 10.41 0.0247

11.59 0.0291 11.59 0.0234 
12.46 0.0274 12.46 0.0225 iI
13.47 . 0.0275 13.47 0.02,17
14. 95 0.0267 14. 95 0.0203	 .
14.91 0.0266 14.91 0.02U2

15.50 0.0270 15.50 0.0210
r.	 I

16. 55 -0.0256 16.55 0.0197r

4	 yX:= 17.72 0.0248 17.72 0.0198
19 .10 0.0235 19 .10 0.0178 .
20.71 0.0225 20.71 0.0155;

f

22. 61 0.0230- 22. 61 0.0149

;.

I: 24. 90 0.0217 24. 90 ' 0.0150
- 26.15 0.0216 26. 15 0.0145-

r

27. 61 0.0??T00 27. 61- 0.0129
•	 •r 29. 32 0.0225 29.32 0.0149i

33 ,. 02 0.0174 33.02 0.0118 
40. 02 0. 02`10 40.02 0.0087$'	 t 44.07 0. 0168-' 44.07 0.0018
47.36 0.0204 46. 44 0.0071
53.95 0.0205 47,.36 0.0063

5050 0.0091`
53.95 ,; 0.0102

i 36
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Table 3.	 Absorptivity of Iron Sample

Wavelength Absorptivity Absorptivity Absorptivity
, at 291 K at 9.0 K at 291 K

(Before Cooldown) (After Cooldown)

2.48 0.1700 0.1648 0.1668
2.68 0.1580 0.1520 0.1578
3.21 0.1280 0.1247 0.1299

f

3.68 0.1110 0.1035 0.1092
4.15 0.0913 0.0862 0.0883

4.53 0.0840 0. 0739, 0.0794y ,
.	 „  4 .99 0.0692 0.0596 0.0691 t

5.53 0.0583 0.0477 0.0585
6.23 0,0492 0.0375 0.0476

°F

}

6.62 0.0446 0.0336 0.0439
is

7.35 0.0366 0.0277 0.0382
7.79 0.0353 0.0256 0.0349
8.30_ 0.0335 0.0234 0.0333 
9.56 0.0288 0.0192 0.0278

10.41 0.0252 0.0186 0.0255

11.59 0.0251 0,0172 0.0246
t

'	 . 12. 46i 0.0260 0.01614 0.0236
13.47 0.0231 0.0159 0.0230r,

_14.95 0.0208 0.0144 0.0198
a 14.91 0.0216 0.0155 0.0207

a 15.50 0.0219 0.0153 0.0204

u

<r
16.55 0.0198' 0.0144 0.0190
17.72 0.0196 0.0139 0.0193
19.10 0.0205 0.0138 0.0185

4 20.71 0.0193 0.0144 0.0202 y

22.61 0.0185 0.0128 0.0185
24.90 0.0195 0.0133 00191
26.15 0.0221 0.0118 0.0225

:.: 27.61 0.0201 0.0117 0.0225
29.32 0,0192 -0.0118 0.0229'j.. fc	 1	 j _. _	

7

_ 33.02 0.0.200 0.0118 0.0223
}^-

40.62 0.0204 0:0112 0.0214 r,
47.36 0.0196 0.0104 0.0229

I

c
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Table 4.	 Absorptivity of Platinum Sample

Wavelength Absorptivity Absorptivity Absorptivity
(tam) at 291 K at 9.0 K at 291 K

(Before Cooldown) (After Cooldown)

2.48 0.1420 0.1510 0.1401
2.68 0.1133 0.0956 0.1119
3.21 0.0746 0. 049,4 0.0745
3.68 0.0603 0.0363 0.0593
4.15 0.0510 0.0292 0.0506
4.53 0.0465 0.0248 0.0453
4 .•99 0.0422 0.0218 0.0418
5.53 0.0388 0.0190 0.0372
6.23 0.0361 0.0179 0.0357
6.62 0.0352 0.0169 _0.0344.
7.35 0.0333 0.0170 0.0327
7.79 0.0334 0.0159 0.0325
8.30 0.0314 0.0144 0.0302
9.56 -0.0300 0.0139 0.0290

10.41 0.0309 0.0123 0.0287
j

11.59 0.0283 0.0123 0.0269
12.46 0.0277 0.01`33 0.0274
13.47 0.0270 0.0128 0. 0-277
14.95 0.0279 0.0128 0.0275

Y	 n

; 	 -
14.`91 0.0260 0.0113 0.0266

15.50 0.0260 0.6118 0.0250
16.55 0.0261 0.0099 0.0265
17.72 0.0255 0.0097 0.0255

r 19. 10 -0.0250" 0.0107 0. 0251°,
20.71 0.0250 0.0098 0.0243

_22..61 0.0241 0.0097 0.0240
. .,, 24.90 0.0241 0. 0107 •	 0.0274 '*

26.15 0-0257 0.0140
,
0.0268

27.61 0.:0242 0.0108 0.027$
29. 32 0.6238 0.0133 6.0278
33.02 0..0220 - 01; 01.12 0.0247
40.02 0.0241 0,.01.23 0.0258

'

47.36 0.02`18 0.0108 0.0232

40
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x, Table 5 Absorptivity of Chromium Sample (continued)

281K 76.5K 7.5K
r

h Wavelength Absorptivity Wavelength Absorptivity Wavelength Absorptivity
^wm ) ^wm)	 (wm)

33'. 02	 0.0228 20.1 71 0.0221

40.02	 0.0224 22,61 0.0208

t 47.36	 0.0179 24.90 0.0197
}

Absorptance After 26.15 0.0164
Cooldown 27.61 0.0151

r

9. 56	 0.0451' 29.32 0.0138
13.77	 0.0353 33.02 0.0133

40.02 0.0098
44.07 0.0032
53.95 0.0022

 f

_

a

y 3	
p

r,

I	 t
r

,

,

s
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it is calculated that, for example, for iron at 15 µ m the error in rela-

tive reflectivity is 0. 00015 which is an order of magnitude below the

errors from other sources.
p

In calculating absorptivities from the measured relative reflecti-

vities a further uncertainty is introduced in the value of the reflectivity

of the gold reference mirror. From the values given in Table 1 it is

seen that a further' systematic error of 0. 001 could thereby be intro-.	 ..,
x

duced into the absorptivity. Total systematic error could therefore

Y';w	 amount to ± 0. 004 'in the absorptivity,

6. Discussion of Experimental Results

and Comparison with Theory

With the exception of chromium, the absorptivity ,data exhibit the

characteristic wavelength and temperature dependence of transition

metals; the same general trends have been observed at higher tempeira-

„	 tures and may be summarized as: a temperature independent high

absorptivity at short wavelengths decreasing monotonically toward

I,	 longer wavelengths, where it becomes strongly temperature dependent.
i

Where other data were available[13, 15, 3.11 these have also been p lotted

and it is seen that agreement varies from only fair for nickel to excellent 	 {
t

for platinum at room temperature,

}

k<

{
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The unusual behavior of chromium at 76. 5 K and 7. 5 K deserves

s ecial comment.	 It appears that a resonance becomes effective at lowP	 PP 
l	 •'A ^

temperatures. 	 This point has already been discussed in the literature

[28 1by Barker et al.	 who measured the reflectivity from room tempera-

ture to 80 K.	 The dip in the reflectivity observed by these authors

occurred at 10 Pm in agreement with the present data. 	 The data of

l figure 13 extend these measurements to lower temperatures and longer

wavelengths and add accuracy to the measurement.	 The phonomenon

has been attributed to the onset of antiferromagnetism below a critical

temperature, the Neel temperature, which is about 312 K for chromium.'
k

i

The present data confirm the expectation of Barker at al. that the ab-

sorptivity should become independent of temperature below 80 K in the

' region of the absorptivity maximum.	 For present purposes it is appar-

ent that the absorptivity of such a metal could not be predicted from the

' semiclassical theory of conduction electrons except perhaps at long

-` wavelengths where the characteristic trend is again resumed. 	 No
.f

calculations	 therefore	 forwere	 .attempted	 chromium,

For the remaining	 etals a comparison with theory was .based	 ,g	 P	 Y	 _

the 2the Anomalousupon	 -band extension of 	 Skin Effect theory.	 The
1

equations were derived by one of us (M. C. J.) and Professor C. L. Tien

at the University of California, Berkeley, and will be presented more	 <,

[291fully in a future publication	 For the present we merely quote the
t

7

final results.	 }
}e
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In the Anomalous Skin Effect theory one calculates the complex

i

` surface impedance rather than the local complex conductivity Gusto-

^s mary in the classical case.	 In.the classical limit the complex impe-

dance for the 2-band case is given by

'
..cl	 4.n iW T j V
Z	 =	 i t r^ + 4i + pia ^^ 1 ^2

	
l

'
Wl c 2	 3

s	 .4 with the supplementary definitions

µ	 #{ 1a1._

w1$ f

Qa W1

}
•'t

i
_

t12	 Q w11	 2

3 TT W T z Q1 V1 2
c 2

s k

-e^w2T12V12
!} _	

W2C2
}

W1 =	 1 + i w T1
.s .

W2 _	 1 +1WT.2

r

Here w is the circular frequency; c is the speed of light in-vacuum; ^	
p

' of is classical static conductivity for the first electron band, V1

its Fermi velocity and'r 1 its relaxation time.	 Similar quantities are

subsc. ripted 2 for the second band of electrons. 	 e..is a. phenomenolog-

ically introduced dielectric constant to take account of polarization of
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equivalent to the theory of Roberts.

I

r

•

1

In the more general Anomalous Skin Effect theory assuming diffuse

electron reflection at the boundary the complex impedance is given by

the, equation

	

4 2i	 00+^j M+ t12X	 )	
^I

Z= W C21 V1 ^,^ .Gr1
L 1±	 t2	

z 
]dt} (2)

	

1	 o

where in addition to terms defined above for (1) we have r = T 1 V1 /T 2 V 2 z 1

and X (t) = 1 -2t - i(1 + t2 ) log 1 + it 1 From the complex impedancet3 	 1 - It J	 ;

the absorptivity A for normal ine.idence is calculated from the equivalent
I'

form of the Fresnel formula

Zo - Z5	
A=1-	 (3)	 1.

Zo + Z
G

where Z,, is the impedance of free space, 4 n /ce

In addition, the relaxation time was calculated from the equation
F	

f

given by Gurzhi^ 1 1 ] for the quantum mechanical interaction referred to
I' 18,91on page 3 in view of the rather compelling evidence in its favor.

.)	 In the form used here we have

T _
	 1 + 1	 ,-1

K(w, T) J	 (4)To	 Tcl
 (e)	

J
o

cl
where T o is the readily available d. c-. value, T (;A) i.s the classical

value calculated at the Debye temperature 6, and K (w,, T) is the function
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A/T	 V - l	 V + 1

K (w , T) = 2 (T 1s JY	 Y d V
 V -y	 V -y

e	 -1	 a	 +l
f

o

with v= ha/kT.	 At low temperatures K varies from 0 at low frequencies

' to 2/5 for tccu>k6.	 Now, Roberts and Seban [ 15] found that e.and the
f

empirical parameters representing the second conduction band had to

x be held constant with temperature in order to reproduce observed ab-

sorptivities.	 The scattering in this band therefore appears not to be

.!' due to phonon interaction so equation 4 was only applied to band- 1. +p	 q	 ( )	 y	 pp

Equations (1) through (4) provide the theoretical framework for the cal-

culations.	 They require the specification of certain material parameters.

These are T 1 , Ql, V1, T2, Q' 2 i V 2 .	 Now it was found in reference E291

f that the parameters for band-2 could not be identified with known d-

r band parameters if anything close to the experimental absorptivity is to
t

'	 I
be calculated at short wavelength,and it was noted that, as far as this ►

band is concerned, the theory, is phenomenological; i. e. , it is not known

how these parameters could be estimated except from absorptivity

data.	 Nevertheless the theory is useful if band- l parameters may still ' t

be identified with the major charge carriers, the s-electrons, and if, f

L. following Roberts and S'eban ` band-2 parameters are taken to be inde- 

i pendent of temperature.	 In this case the temperature dependence of

i	 r 48
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4..

U• 3. the absorptivity could still be predicted unambiguously from the d. c.

I

I

conductivity and, furthermore, it is found that the long wavelength ab-

r
y

sor tivit	 is unaffected b	 the choice of these e mpiricalP	 Y	 yp arameters.P	 P

The following calculation scheme was therefore followed in a 	 k'

trial and error procedure by which best values for band-2 parameters ),	 P
t

were selected on the basis of the fit to the room temperature data.

For a given value of C21 Ql was calculated from the zero fre - 

quency constraint

where go is the d, c. conductivity for the pure annealed metal obtained
t: [30]from the literature.	 On the assumption of a spherical Fermi surface

T 1 was calculated from the free electron. formula }	 t^

n	 2 Ti
3-y 0 1	ml E

i

of P
	 ^

^ ^ Jwith the ratio nl /m, obtained from *the literature.	 n1 is the effective" ^ 	 F1
rM of 

r

number of s -electrons and ml the effective mass. 	 Finally V1 was also 1

obtained directly.from the literature^ 23 When "the best fit had been ob-

tained at room temperature the liquid helium temperature absorptivity

required only the specification of the appropriate new value of a. from,

the literature.	 Since the extensive literature on this property at liquid :`	 '	 c

helium temperatures shows a wide variation, calculations were repeated

for a value one third of the original value used. 	 No significant  change

j
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was observed, showing that the theory is close to the temperature in-

dependent extreme anomalous limit. The values of the parameters

used in the calculation are listed in Table 6. In place of relaxation

times T1 and T 2 equivalent wavelengths	 2 T7 c T ) are given.

The results of the calculations are shown in figures 10, 11 and

12. In addition to •the liquid helium temperature calculation described

above, bas ed on the 2-band Anomalous Skin Effect theory,the curve re-

sulting from the classical limit, i, e. , equation (1) is also. shown and, y
t

for platinum (figure 12) we also show the corresponding curves with a

frequency independent relaxation time to illustrate the contribution due

to frequency dependence in equation (4). u

Comparison with the data shows that for nickel. and iron even	 s

at room temperature the calculation is only in qualitativeagreement

although the magnitude of the temperature shift is approximately correct.

Furthermore, for these two metals the curves presented were calculated

with nl /m, decreased from the literature values. This had the effect of
6.

increasing the short wavelength absorptivity and decreasing the long

wavelength absorptivity compared to the curves which were based on

literature values of n1 /ml. In fact, this quantity is not accurately.
f

known so that some latitude is permissable. Even so the room tempera-
t

ture fit is '.got good.

t
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Table 6. Metal Parameters Used in Calculations

•

k

Parameter Temperature Nickel Iron	 Platinum

CIO 295 K 1.278 0.918 0.864

(esu X 10 17 ) 4 K 450 901 2.270
i

Q2

(esu X 10 11 ) 0.10 0.07 0.07

(µm) 0.10 0.20 0.2
}

a
v2

`n

(cm	 sec ' 1 X 10 8 ) 0.0604 0.215 0.0715

Q1.- Q o	 Q2 295 K 1.178 0.848 0.794

(esu x 10 1") 4 K 450 901 2270

n_

ml f

r,4t
}i

(cm' 3 g- i x 10 60) 0.20 0.15
i

0.44
1

2ncml
^ 1 = Ql 295 K 48 46. 2 14.7

nl e2

(4m) 4 K 18,400 49,100 429200

Vl

(cm sec-1 X 108 ) 1.365 0. 912 1.230

h ,

{ Em 2.7 2.4 2.4

Note: Of these parameters Q2 ,	 X22 and E'er taken together are, empirical;

the rest are obtained from the literature or calculated as indicated.
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	 In the case of platinum, without adjustment of n l/M l , the fit to the

data at both room and liquid helium temperature is quite good over

most of the wavelength range. At short wavelengths the data, particu-

larly when taken together with those of Seban, are suggestive of some

sort of resonance not taken into account by the theory and they diverge

from the calculated curve at both temperatures.

For all three metals it is seen that at liquid helium temperatures

the more general Anomalous Skin Effect theory is an improvement over

the classical limit. It is noted also that the curves lie considerably

	

	 }
g

higher, even at room temperature, when the frequency dependent relax-
3

{	 ation time of equation (4) is used. The data therefore lend some further

support to the quantum absorption mechanism and the fact that the

infrared relaxation time cannot be directly related to the d. c. value.

:a	 This is quite important for transition metals which mostly have high

Debye temperatures and for which the quantum absorption -would be

more pronounced and to be expected even at room temperature. 	 4

k

7. Conclusions

1,. Experimental data have been obtained for the normal spectral

absorptivity of the transition metals nickel, iron, platinum andr.
A	 chromium at both room and liquid helium temperatures in the

wavelength range 2. 5 to 50 µ M. The absorptivity was derived

from reflectivity measurements made relative to a room-temperature
r
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infrared laser sources.
i

2.	 Various methods of surface preparation were investigated. 'The

method selected for final data by the criterion. of highest near r

infrared reflectivity was mechanical polishing with progressively

finer grades of diamond abrasive followed by vacuum annealing at
i,

f;	 ,

temperatures close to the published one hour recrystallization a	 ..

temperatures.	 In' some cases repetition of the last stages of

mechanical polishing and reanneal .ing gave rise to even higher

reflectivities. }

3.	 The effect on the absorptivity of lowering the temperature was in

all cases negligible at short wavelengths but a significant lowering
v.

at longer wavelengths. 	 In the case of chromium an additional w

feature appears; an absorptivity maximum higher than the room

temperature absorptivity occurs at about 10 P m. 	 This feature,} ^Y

identified by others as due to the onset of antiferromagnetism,

appears to be independent of temperature below liquid nitrogenPP	 P	 P	 q	 g
5

temperature.
r

4.	 Calculations of the absorptivity based on a 2-band model were

made.	 It was necessary to determine the material constants for

the second band empirically. 	 The first band was identified with
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a
the s-electrons. The temperature and wavelength dependence of

the absorptivities for nickel and iron could be represented only

qualitatively for iron and nickel, but for platinum quite well if

second band parameters were assumed to be temperature indepen-

dent. The Anomalous Skin Effect theory was found to give a better

account of the temperature dependence than the classical theory.

In all cases it was necessary to calculate the relaxation time for

s-electrons according to the theory of the quantum mechanical

interaction due to Holstein and Gurzhi in order to achieve suffi- r
j

f
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PART II. LOW TEMPERATURE INFRARED REFLECTIVITY

MEASUREMENTS FOR INDIUM ANTIMONIDE

1. Introduction

All III-V semiconducting compounds exhibit an infrared resonance

frequency which is poorly understood except in a qualitative manner.

The resonance is due to the interaction of the electric field of the light

wave with the electric dipole moment of the crystal unit cell. This

dipole moment will exist when the unit cell contains nonidentical atoms.

The dipole moment in III-V semiconductors is thought to be associated

with a polarized covalent bond but no calculations exist which predict

the resonance or "reststrahlen" frequency of the oscillating dipoles. 1

t

The purpose of the measurements reported here was an accurate deter- 	 I`

s

mination of the reststrahlen frequency to be corn,

	

	 q	 Y	 aced with a theoreticalP

value calculated as described in Section 4. One of us (D. C. P. } has in-

vestigated this phenomenon of the . "reststrahlen" frequency in indium 	 1.

antimonide experimentally at N. B. S. and theoretically with Dr. Neil t
{	 t.

a_ 	 .

Ashby at the University of` Colorado. The theoretical crystal model'
t

` 	 in Section 4 assumes that the crystal lattice sites are fixedi. proposed	 Y

except for the oscillation due to reststrahlen resonance. A correct

model ` for high temperatures. would include a shift in this resonance fre-

quency due to interaction of the reststrahlen_ mode with thermal vibra-

tions of the lattice Experimental data for comparison with the theory

G pAG^
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.	 :	 } should therefore be taken at a low temperature.

2.	 Experimental

Using the' low temperature reflectivity techniques described in

Part I,	 the reflectance of indium antimonide vs. gold was measured
.

at a temperature of 10. 5 ± .3 K from 41 to 283 cm' 1 .	 The reflectivity
x	 ,

was measured to ± . 5% and the wave number to ± , 15 crn' 1 in the

spectral region crucial to the determination of the reststrahlen frequency

(167 cm- 1 - 283 cm -1 ).	 The wave number resolution was held to

1.5 cm-1 over the region 180 cm-1 - 197 cm' 1 .	 The indium antimonide

sample was doped with tellurium and had a carrier concentration of
4

2. 9 x 101s cm,	at 77 K.

The indium antimonide sam le was approximatelyroximately 1 /8 ;inch thickp

and was mechanically polished with a series of abrasives, terminating

with .3 micron alumina.	 The surface was finished by chemical polish-

ing (2 gm. of iodine dissolved in 50 ml. methanol) for - one minute to re-

move the material work-hardened by abrasion. 	 The resulting mirror`

smooth surface deviated from perfect flatness by less than l micron

' over the 5/8 inch diameter_ central area struck by the light beam.

The wave number scale of the spectrophotometer was calibrated {

for each grating by recording the scale readings which correspond to

multiple orders of the green line in the mercury spectrum. 	 A computer

program was written to provide the wave. number v = F 6 (d) for any

_ 60



grating g and scale reading d.	 The function F. (d) was assumed to be a

f fifth order polynomial in d.	 The coefficients in F. were evaluated by a

least squares fit to the calibration data.

a, 3.	 Data Analysis
i

The experimental reflectivity spectrum (See Fig. 1 and Table I)

was compared to the reflectivity function derived from a classical
i

1^Drude -Lorenz model:[
1

'

/2el	 _ 1
2

R(O	 = 100 1-2 -- i

x e	 +1

where
t .

E = E 1 + lE 2 ,	 0 = v / Vo
!:

and i

,
2

r- (a - 1) (1 - 02)	 ^P

,E 1E1	
E°°	

i + 
(1 -Z2 )+r^2	 n2

+ rE J
3

rL 0( a - 1) 	rE 0F
^^f

+e2	 eC, L (1 -n2)2+r2 n2	 n3 + r2 n
L	 E

V	 = frequency in cm-1 (wave numbers)

y

;Y

vo = reststrahlen frequency

C	 = complex dielectric constant

el = real part of the dielectric constant '-^
a

t.

e^, 2 = imaginary part of the dielectric constant

e- dielectric constant when v >> vo but less than interbandCO- 

,f transition lrcquencies
4

E
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Table 1 . Reflectivity of Indium Antimonide at 10. 5 K

^Wavenumber CalculatedResolution Measured
(cm -1 ) (cm-1) Reflectivity Reflectivity

( %) ( %)

I` 41.2 1 93.0 91.13
50.3 1 90.2 89.30
60.4 1 85.4 85.71
70.5 1 73.3 78.12
75.7 1 65.3 70.60

80.2 1 62.7 59.56
85. 1 1 36. 1 39. 46

' 88. 1 1 26.0 25. 14
90. 1 1 15. 6 17. 32

t: 93.3 1 13.2 11.74;
a

95.1 1 11.2 11.27
jA

100.3 2 14.1 13.82
{ 105.3 2 17.2 17.2 6

110.3 2 21.3 20.33
120. 6 2 25.2 25.22

130 ._6 2 30. 1 28.83
140.9 3 31. 9' 31.94
150. 9 4 34.6 34.95

.F 161.1 4 39. 1 38.74;,
167.3 4 41.8 42.05 Via'

168.8 3 42.8 43. 10
172.5 3 46.4 46.39
176.6 3 51. 6 52. 33
180.8 1.5 65. 5 65.38
182.6 1.5 83.5 81.89

i
184.9 1.5 96.5 96.90
186.7 1.5 97:0 97.08

iL

w 189.0- 1.5 98. 0 96.43
190.9 1.5 96.9 95.16 .:

194.1 1.5 89. 7 88.56 i
r

,
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Table 1. (continued)

CalculatedW avenumber Resolution Measured
(cm -1 ) (CM-1) Reflectivity Reflectivity

M M

195.0 1.5 73.9 83.50
195.9 1.5 60.1 73. 73
196.9 1.5 41.1 51.07
198.2 2.0 11.8 2.63
199.2 2.0 4.9 1. 15

200. 1 2.0 4.3 3.07
201.5 2.0 6.2 6.38
202.4 2.0 7.7 8.33
210.7 2.0 18.3 18.36
221.4 2.0 23.4 23.50

231.6 3.0 26. 1 26.05
241.9 3.0 27.0 27.66
252.2 .3. 0 28.5 U. 79
262.0 3. 0 . 29.5 29. 60
272.8 3.0 29.8 30.28

5
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eo = lattice dielectric constant when V << Vo

V P = carrier electron plasma frequency

`	 `^ a	 = E o /ems

O P = VP /Vo

rE = carrier electron damping constant

rL = lattice damping constant

The reflectivity function R(Q	 contains six empirical parameters ;-

which were determined by a least squares fit to the reflectivity data.

The values of these parameters are the major results of this experiment.

'
r

7 T L 	 = o. 002 54

a	 = 1. 13

rE	 = 0.070±0.005
;

z
- 0. 528 ± 0.005

P i

e	 = 15.4' +- 0. 9CO	 -
a

v o '	 = 183. 0 ± 0, 2 cm-1

rs

- The limits placed on .the last four parameters are 9516 confidence

^
_ intervals established by analyzing the scatter of the experimental re-
*. t ff

flectivity data._ The variances Cr 2 of the parameters were determined

from experimental scatter by a second least squares fit. 	 Reliable values

for (7	 and (7a were not obtainable by this technique.	 We conclude that

_F the R(0) fit is not .sensitive to r L and a, and their quoted values are of at,

r	 4° undetermined accuracy.	 The reststrahlen frequency V o is of central

. interest and can claim greater accuracy than the previous result
r

v^' = 181. ? f 3 cm _l of Hass and Henvis ^2 .
'I

i

.a

}
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4.	 Theory of the Reststrahlen Frequency
s,

An approximate quantum mechanical model for the I"nSb crystal
[ 3]has been developed and incorporated into a computer program to

calculate the crystal binding energy.	 The approach is similar to that of
{ [41Coulson, Redei and Stocker	 in their calculation of the binding energy

of boron nitride.	 Each covalent bond of the, crystal is represented by a

molecular orbital composed of adjacent SP3 hybrid atomic orbitals.
i

The wave function T of the entire crystal is assumed to be an antisym-

' metrized product of these bond wave functions.	 The binding energy of

the crystal is then the expectation value of the crystal Hamiltoman:

E . (T H I'Y) .

This basic scheme proposed by CRS has been modified to applya

-_ to crystals composed of heavier atoms where there are many electrons1 ^.

which do not participate in the bonds.	 The valence electrons are re-

quired to remain outside a`spherically symmetric core 'containing 46. '

electrons for indium or antimony. 	 The ratio of the core radii for {

f indicun and antimony is, determined by examinationof the Hartree -Fork-
•

Slater atomic wave functions t 5 1 4.	 w

m	 .	 The core radii are then fixed by re -

quiring that the crystal binding energy have a minimum at the experi-

mentally determined nearest neighbor distance 2. 81 3.

s
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Calculations are currently under way to determine the proper

•
core radii.	 The bond wave function.contains five independent para-.

meters which are varied to minimize E. 	 The variational principle
f

assures us that the lowest value of E corresponds to the best wave func -
3

tion of the form assumed. 	 Our model is sufficiently simpler than that of

CRS to make such variation feasible in terms of the computer time

required.

`	 { Once the core sizes are found, this model should allow approxi-

of mate calculations of the valence electron density in the crystal, its
J

compressibility and the reststp	 y	 rahlen frequency.. For example: 1^

To calculate va one must examine the shape of the binding energy I

curve as the indium and antimony atoms in a unit cell oscillate under

the influence of an electromagnetic wave.	 The second derivative of E

:F with respect to the distance between indium and antimony cores deter- {

L	 *1 mines -the value of vo .	 Although the model proposed is crude, this is a.:

more fundamental approach to the calculation of v o than has previously

been attempted. L

The theoretical and experimental work described. in this report

y^ gill 'be documented in the authors- thesis at the University of Colorado.

E	 ^
.

k
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