95,892 research outputs found
The influence of radiation shielding on reusable nuclear shuttle design
Alternate reusable nuclear shuttle configurations were synthesized and evaluated. Particular attention was given to design factors which reduced tank exposure to direct and scattered radiation, increased payload-engine separation, and improved self-shielding by the LH2 propellant. The most attractive RNS concept in terms of cost effectiveness consists of a single conical aft bulkhead tank with a high fineness ratio. Launch is accomplished by the INT-21 with the tank positioned in the inverted attitude. The NERVA engine is delivered to orbit separately where final stage assembly and checkout are accomplished. This approach is consistent with NERVA definition criteria and required operating procedures to support an economically viable nuclear shuttle transportation program in the post-1980 period
Vortex macroscopic superpositions in ultracold bosons in a double-well potential
We study macroscopic superpositions in the orbital rather than the spatial
degrees of freedom, in a three-dimensional double-well system. We show that the
ensuing dynamics of interacting excited ultracold bosons, which in general
requires at least eight single-particle modes and Fock
vectors, is described by a surprisingly small set of many-body states. An
initial state with half the atoms in each well, and purposely excited in one of
them, gives rise to the tunneling of axisymmetric and transverse vortex
structures. We show that transverse vortices tunnel orders of magnitude faster
than axisymmetric ones and are therefore more experimentally accessible. The
tunneling process generates macroscopic superpositions only distinguishable by
their orbital properties and within experimentally realistic times.Comment: 9 pages, 6 figure
Symplectic gauge fields and dark matter
The dynamics of symplectic gauge fields provides a consistent framework for
fundamental interactions based on spin three gauge fields. One remarkable
property is that symplectic gauge fields only have minimal couplings with
gravitational fields and not with any other field of the Standard Model.
Interactions with ordinary matter and radiation can only arise from radiative
corrections. In spite of the gauge nature of symplectic fields they acquire a
mass by the Coleman-Weinberg mechanism which generates Higgs-like mass terms
where the gravitational field is playing the role of a Higgs field. Massive
symplectic gauge fields weakly interacting with ordinary matter are natural
candidates for the dark matter component of the Universe.Comment: 16 page
Casimir Effect and Global Theory of Boundary Conditions
The consistency of quantum field theories defined on domains with external
borders imposes very restrictive constraints on the type of boundary conditions
that the fields can satisfy. We analyse the global geometrical and topological
properties of the space of all possible boundary conditions for scalar quantum
field theories. The variation of the Casimir energy under the change of
boundary conditions reveals the existence of singularities generically
associated to boundary conditions which either involve topology changes of the
underlying physical space or edge states with unbounded below classical energy.
The effect can be understood in terms of a new type of Maslov index associated
to the non-trivial topology of the space of boundary conditions. We also
analyze the global aspects of the renormalization group flow, T-duality and the
conformal invariance of the corresponding fixed points.Comment: 11 page
Quasi-Periodic Oscillations and energy spectra from the two brightest Ultra-Luminous X-ray sources in M82
Ultra-Luminous X-ray sources are thought to be accreting black holes that
might host Intermediate Mass Black Holes (IMBH), proposed to exist by
theoretical studies, even though a firm detection (as a class) is still
missing. The brightest ULX in M82 (M82 X-1) is probably one of the best
candidates to host an IMBH. In this work we analyzed the data of the recent
release of observations obtained from M82 X-1 taken by XMM-Newton. We performed
a study of the timing and spectral properties of the source. We report on the
detection of (46+-2) mHz Quasi-Periodic Oscillations (QPOs) in the power
density spectra of two observations. A comparison of the frequency of these
high-frequency QPOs with previous detections supports the 1:2:3 frequency
distribution as suggested in other studies. We discuss the implications if the
(46+-2) mHz QPO detected in M82 X-1 is the fundamental harmonic, in analogy
with the High-Frequency QPOs observed in black hole binaries. For one of the
observations we have detected for the first time a QPO at 8 mHz (albeit at a
low significance), that coincides with a hardening of the spectrum. We suggest
that the QPO is a milli-hertz QPO originating from the close-by transient ULX
M82 X-2, with analogies to the Low-Frequency QPOs observed in black hole
binaries.Comment: 9 pages (with 4 figures and 4 tables). Accepted for publication in
MNRAS (26/09/13
Ultraluminous X-ray sources with flat-topped noise and QPO
We analyzed the X-ray power density spectra of five ultraluminous X-ray
sources (ULXs) NGC5408 X-1, NGC6946 X-1, M82 X-1, NGC1313 X-1 and IC342 X-1
that are the only ULXs which display both flat-topped noise (FTN) and
quasi-periodic oscillations (QPO). We studied the QPO frequencies, fractional
root-mean-square (rms) variability, X-ray luminosity and spectral hardness. We
found that the level of FTN is anti-correlated with the QPO frequency. As the
frequency of the QPO and brightness of the sources increase, their fractional
variability decreases. We propose a simple interpretation using the
spherizarion radius, viscosity time and -parameter as basic properties
of these systems. The main physical driver of the observed variability is the
mass accretion rate which varies >3 between different observations of the same
source. As the accretion rate decreases the spherization radius reduces and the
FTN plus the QPO move toward higher frequencies resulting in a decrease of the
fractional rms variability. We also propose that in all ULXs when the accretion
rate is low enough (but still super-Eddington) the QPO and FTN disappear.
Assuming that the maximum X-ray luminosity depends only on the black hole (BH)
mass and not on the accretion rate (not considering the effects of either the
inclination of the super-Eddington disc nor geometrical beaming of radiation)
we estimate that all the ULXs have about similar BH masses, with the exception
of M82 X-1, which might be 10 times more massive.Comment: 15 pages, 7 figures, accepted for publication in MNRA
Computer simulation of on-orbit manned maneuvering unit operations
Simulation of spacecraft on-orbit operations is discussed in reference to Martin Marietta's Space Operations Simulation laboratory's use of computer software models to drive a six-degree-of-freedom moving base carriage and two target gimbal systems. In particular, key simulation issues and related computer software models associated with providing real-time, man-in-the-loop simulations of the Manned Maneuvering Unit (MMU) are addressed with special attention given to how effectively these models and motion systems simulate the MMU's actual on-orbit operations. The weightless effects of the space environment require the development of entirely new devices for locomotion. Since the access to space is very limited, it is necessary to design, build, and test these new devices within the physical constraints of earth using simulators. The simulation method that is discussed here is the technique of using computer software models to drive a Moving Base Carriage (MBC) that is capable of providing simultaneous six-degree-of-freedom motions. This method, utilized at Martin Marietta's Space Operations Simulation (SOS) laboratory, provides the ability to simulate the operation of manned spacecraft, provides the pilot with proper three-dimensional visual cues, and allows training of on-orbit operations. The purpose here is to discuss significant MMU simulation issues, the related models that were developed in response to these issues and how effectively these models simulate the MMU's actual on-orbiter operations
- …