934 research outputs found

    An unusual complication of ureteral double-J stent placement: ureteral perforation

    Get PDF
    Ureteral double-J stent implantation has become a routine procedure in the management of a variety of urinary tract pathologies. Although this is a safe and simple procedure, there can be unexpected severe complications such as malpositioning, encrustation, ureteral erosion, intravascular migration, hematoma and ureterovascular fistula. Intraoperative fluoroscopic examination and postoperative imaging modalities are useful in early diagnosis and prevention of these complications. We present a case of right ureteral perforation during retrograde double-J stent implantation. To our knowledge ureteral perforation due to double-J stent placement has not been previously described

    Waste to biodiesel: A preliminary assessment for Saudi Arabia

    Get PDF
    This study presents a preliminary assessment of biodiesel production from waste sources available in the Kingdom of Saudi Arabia (KSA) for energy generation and solution for waste disposal issues. A case study was developed under three different scenarios: (S1) KSA population only in 2017, (S2) KSA population and pilgrims in 2017, and (S3) KSA population and pilgrims by 2030 using the fat fraction of the municipal solid waste. It was estimated that S1, S2, and S3 scenarios could produce around 1.08, 1.10 and 1.41 million tons of biodiesel with the energy potential of 43423, 43949 and 56493 TJ respectively. Furthermore, annual savings of US $55.89, 56.56 and 72.71 million can be generated from landfill diversion of food waste and added to the country's economy. However, there are challenges in commercialization of waste to biodiesel facilities in KSA, including waste collection and separation, impurities, reactor design and biodiesel quality

    Accelerated diabetic wound healing by topical application of combination oral antidiabetic agents-loaded nanofibrous scaffolds: An in vitro and in vivo evaluation study

    Get PDF
    The combination of oral antidiabetic drugs, pioglitazone, metformin, and glibenclamide, which also exhibit the strongest anti-inflammatory action among oral antidiabetic drugs, were loaded into chitosan/gelatin/polycaprolactone (PCL) by electrospinning and polyvinyl pyrrolidone (PVP)/PCL composite nanofibrous scaffolds by pressurized gyration to compare the diabetic wound healing effect. The combination therapies significantly accelerated diabetic wound healing in type-1 diabetic rats and organized densely packed collagen fibers in the dermis, it also showed better regeneration of the dermis and epidermis than single drug-loaded scaffolds with less inflammatory cell infiltration and edema. The formation of the hair follicles started in 14 days only in the combination therapy and lower proinflammatory cytokine levels were observed compared to single drug-loaded treatment groups. The combination therapy increased the wettability and hydrophilicity of scaffolds, demonstrated sustained drug release over 14 days, has high tensile strength and suitable cytocompatibility on L929 (mouse fibroblast) cell and created a suitable area for the proliferation of fibroblast cells. Consequently, the application of metformin and pioglitazone-loaded chitosan/gelatin/PCL nanofibrous scaffolds to a diabetic wound area offer high bioavailability, fewer systemic side effects, and reduced frequency of dosage and amount of drug

    Sustainability, Peak oil

    Get PDF
    none4openDe leo Federica, Pier paolo Miglietta, Stefania Massari, Marcello RubertiDE LEO, Federica; Miglietta, PIER PAOLO; Massari, Stefania; Ruberti, Marcell

    The natural history of classic galactosemia: lessons from the GalNet registry.

    Get PDF
    BACKGROUND Classic galactosemia is a rare inborn error of carbohydrate metabolism, caused by a severe deficiency of the enzyme galactose-1-phosphate uridylyltransferase (GALT). A galactose-restricted diet has proven to be very effective to treat the neonatal life-threatening manifestations and has been the cornerstone of treatment for this severe disease. However, burdensome complications occur despite a lifelong diet. For rare diseases, a patient disease specific registry is fundamental to monitor the lifespan pathology and to evaluate the safety and efficacy of potential therapies. In 2014, the international Galactosemias Network (GalNet) developed a web-based patient registry for this disease, the GalNet Registry. The aim was to delineate the natural history of classic galactosemia based on a large dataset of patients. METHODS Observational data derived from 15 countries and 32 centers including 509 patients were acquired between December 2014 and July 2018. RESULTS Most affected patients experienced neonatal manifestations (79.8%) and despite following a diet developed brain impairments (85.0%), primary ovarian insufficiency (79.7%) and a diminished bone mineral density (26.5%). Newborn screening, age at onset of dietary treatment, strictness of the galactose-restricted diet, p.Gln188Arg mutation and GALT enzyme activity influenced the clinical picture. Detection by newborn screening and commencement of diet in the first week of life were associated with a more favorable outcome. A homozygous p.Gln188Arg mutation, GALT enzyme activity of ≤ 1% and strict galactose restriction were associated with a less favorable outcome. CONCLUSION This study describes the natural history of classic galactosemia based on the hitherto largest data set

    A Multinational Study of Acute and Long‐Term Outcomes of Type 1 Galactosemia Patients Who Carry the S135L (c.404C > T) Variant of GALT

    Get PDF
    Patients with galactosemia who carry the S135L (c.404C > T) variant of galactose-1-P uridylyltransferase (GALT), documented to encode low-level residual GALT activity, have been under-represented in most prior studies of outcomes in Type 1 galactosemia. What is known about the acute and long-term outcomes of these patients, therefore, is based on very limited data. Here, we present a study comparing acute and long-term outcomes of 12 patients homozygous for S135L, 25 patients compound heterozygous for S135L, and 105 patients homozygous for two GALT-null (G) alleles. This is the largest cohort of S135L patients characterized to date. Acute disease following milk exposure in the newborn period was common among patients in all 3 comparison groups in our study, as were long-term complications in the domains of speech, cognition, and motor outcomes. In contrast, while at least 80% of both GALT-null and S135L compound heterozygous girls and women showed evidence of an adverse ovarian outcome, prevalence was only 25% among S135L homozygotes. Further, all young women in this study with even one copy of S135L achieved spontaneous menarche; this is true for only about 33% of women with classic galactosemia. Overall, we observed that while most long-term outcomes trended milder among groups of patients with even one copy of S135L, many individual patients, either homozygous or compound heterozygous for S135L, nonetheless experienced long-term outcomes that were not mild. This was true despite detection by newborn screening and both early and life-long dietary restriction of galactose. This information should empower more evidence-based counseling for galactosemia patients with S135L.info:eu-repo/semantics/publishedVersio

    Potential applications of nanotechnology in thermochemical conversion of microalgal biomass

    Get PDF
    The rapid decrease in fossil reserves has significantly increased the demand of renewable and sustainable energy fuel resources. Fluctuating fuel prices and significant greenhouse gas (GHG) emission levels have been key impediments associated with the production and utilization of nonrenewable fossil fuels. This has resulted in escalating interests to develop new and improve inexpensive carbon neutral energy technologies to meet future demands. Various process options to produce a variety of biofuels including biodiesel, bioethanol, biohydrogen, bio-oil, and biogas have been explored as an alternative to fossil fuels. The renewable, biodegradable, and nontoxic nature of biofuels make them appealing as alternative fuels. Biofuels can be produced from various renewable resources. Among these renewable resources, algae appear to be promising in delivering sustainable energy options. Algae have a high carbon dioxide (CO2) capturing efficiency, rapid growth rate, high biomass productivity, and the ability to grow in non-potable water. For algal biomass, the two main conversion pathways used to produce biofuel include biochemical and thermochemical conversions. Algal biofuel production is, however, challenged with process scalability for high conversion rates and high energy demands for biomass harvesting. This affects the viable achievement of industrial-scale bioprocess conversion under optimum economy. Although algal biofuels have the potential to provide a sustainable fuel for future, active research aimed at improving upstream and downstream technologies is critical. New technologies and improved systems focused on photobioreactor design, cultivation optimization, culture dewatering, and biofuel production are required to minimize the drawbacks associated with existing methods. Nanotechnology has the potential to address some of the upstream and downstream challenges associated with the development of algal biofuels. It can be applied to improve system design, cultivation, dewatering, biomass characterization, and biofuel conversion. This chapter discusses thermochemical conversion of microalgal biomass with recent advances in the application of nanotechnology to enhance the development of biofuels from algae. Nanotechnology has proven to improve the performance of existing technologies used in thermochemical treatment and conversion of biomass. The different bioprocess aspects, such as reactor design and operation, analytical techniques, and experimental validation of kinetic studies, to provide insights into the application of nanotechnology for enhanced algal biofuel production are addressed
    corecore