2,075 research outputs found
Particle size segregation in granular flow in silos
Segregation and layering of alumina in storage silos are investigated, with a view to predicting output quality versus time, given known variations in input quality on emplacement. A variety of experiments were conducted, existing relevant publications were reviewed, and the basis for an algorithm for predicting the effect of withdrawing from a central flowing region, in combination with variations in quality due to geometric, layering and segregation effects, is described in this report
Assessment of Gravity Wave Momentum Flux Measurement Capabilities by Meteor Radars Having Different Transmitter Power and Antenna Configurations
Measurement capabilities of five meteor radars are assessed and compared to determine how well radars having different transmitted power and antenna configurations perform in defining mean winds, tidal amplitudes, and gravity wave (GW) momentum fluxes. The five radars include two new-generation meteor radars on Tierra del Fuego, Argentina (53.8 deg S) and on King George Island in the Antarctic (62.1 deg S) and conventional meteor radars at Socorro, New Mexico (34.1 deg N, 106.9 deg W), Bear Lake Observatory, Utah (approx 41.9 deg N, 111.4 deg W), and Yellowknife, Canada (62.5 deg N, 114.3 deg W). Our assessment employs observed meteor distributions for June of 2009, 2010, or 2011 for each radar and a set of seven test motion fields including various superpositions of mean winds, constant diurnal tides, constant and variable semidiurnal tides, and superposed GWs having various amplitudes, scales, periods, directions of propagation, momentum fluxes, and intermittencies. Radars having higher power and/or antenna patterns yielding higher meteor counts at small zenith angles perform well in defining monthly and daily mean winds, tidal amplitudes, and GW momentum fluxes, though with expected larger uncertainties in the daily estimates. Conventional radars having lower power and a single transmitting antenna are able to describe monthly mean winds and tidal amplitudes reasonably well, especially at altitudes having the highest meteor counts. They also provide qualitative estimates of GW momentum fluxes at the altitudes having the highest meteor counts; however, these estimates are subject to uncertainties of approx 20 to 50% and uncertainties rapidly become excessive at higher and lower altitudes. Estimates of all quantities degrade somewhat for more complex motion fields
Hydrodynamic theory of de-wetting
A prototypical problem in the study of wetting phenomena is that of a solid
plunging into or being withdrawn from a liquid bath. In the latter, de-wetting
case, a critical speed exists above which a stationary contact line is no
longer sustainable and a liquid film is being deposited on the solid.
Demonstrating this behavior to be a hydrodynamic instability close to the
contact line, we provide the first theoretical explanation of a classical
prediction due to Derjaguin and Levi: instability occurs when the outer, static
meniscus approaches the shape corresponding to a perfectly wetting fluid
Disjoining Potential and Spreading of Thin Liquid Layers in the Diffuse Interface Model Coupled to Hydrodynamics
The hydrodynamic phase field model is applied to the problem of film
spreading on a solid surface. The disjoining potential, responsible for
modification of the fluid properties near a three-phase contact line, is
computed from the solvability conditions of the density field equation with
appropriate boundary conditions imposed on the solid support. The equation
describing the motion of a spreading film are derived in the lubrication
approximation. In the case of quasi-equilibrium spreading, is shown that the
correct sharp-interface limit is obtained, and sample solutions are obtained by
numerical integration. It is further shown that evaporation or condensation may
strongly affect the dynamics near the contact line, and accounting for kinetic
retardation of the interphase transport is necessary to build up a consistent
theory.Comment: 14 pages, 5 figures, to appear in PR
Many quantitative trait loci for feather growth in an F broiler × layer cross collocate with body weight loci
1. A genome-wide scan of 467 F progeny of a broiler x layer cross was conducted to identify quantitative trait loci (QTL) affecting the rate of growth of the tail, wing and back feathers, and the width of the breast feather tract, at three weeks of age. 2. Correlations between the traits ranged from 0·36 to 0·61. Males had longer tail and wing feathers and shorter back feathers than females. Breast feather tract width was greater in females than males. 3. QTL effects were generally additive and accounted for 11 to 45% of sex average feather lengths of the breeds, and 100% of the breast feather tract width. Positive and negative alleles were inherited from both lines, whereas the layer allele was larger than the broiler allele after adjusting for body weight. 4. A total of 4 genome-significant and 4 suggestive QTL were detected. At three or 6 weeks of age, 5 of the QTL were located in similar regions as QTL for body weight. 5. Analysis of a model with body weight at three weeks as a covariate identified 5 genome significant and 6 suggestive QTL, of which only two were coincident with body weight QTL. One QTL for feather length at 148 cM on GGA1 was identified at a similar location in the unadjusted analysis. 6. The results suggest that the rate of feather growth is largely controlled by body weight QTL, and that QTL specific for feather growth also exist
Three-dimensional gravity-capillary solitary waves in water of finite depth and related problems
Recommended from our members
Simulating the effects of mid- to upper-tropospheric clouds on microwave emissions in EC-Earth using COSP
In this work, the Cloud Feedback Model Intercomparison (CFMIP) Observation Simulation Package (COSP) is expanded to include scattering and emission effects of clouds and precipitation at passive microwave frequencies. This represents an advancement over the official version of COSP (version 1.4.0) in which only clear-sky brightness temperatures are simulated. To highlight the potential utility of this new microwave simulator, COSP results generated using the climate model EC-Earth's version 3 atmosphere as input are compared with Microwave Humidity Sounder (MHS) channel (190.311 GHz) observations. Specifically, simulated seasonal brightness temperatures (TB) are contrasted with MHS observations for the period December 2005 to November 2006 to identify possible biases in EC-Earth's cloud and atmosphere fields.
The EC-Earth's atmosphere closely reproduces the microwave signature of many of the major large-scale and regional scale features of the atmosphere and surface. Moreover, greater than 60 % of the simulated TB are within 3 K of the NOAA-18 observations. However, COSP is unable to simulate sufficiently low TB in areas of frequent deep convection. Within the Tropics, the model's atmosphere can yield an underestimation of TB by nearly 30 K for cloudy areas in the ITCZ. Possible reasons for this discrepancy include both incorrect amount of cloud ice water in the model simulations and incorrect ice particle scattering assumptions used in the COSP microwave forward model. These multiple sources of error highlight the non-unique nature of the simulated satellite measurements, a problem exacerbated by the fact that EC-Earth lacks detailed micro-physical parameters necessary for accurate forward model calculations. Such issues limit the robustness of our evaluation and suggest a general note of caution when making COSP-satellite observation evaluations
Drake Antarctic Agile Meteor Radar (DrAAMER) First Results: Configuration and Comparison of Mean and Tidal Wind and Gravity Wave Momentum Flux Measurements with SAAMER
A new-generation meteor radar was installed at the Brazilian Antarctic Comandante Ferraz Base (62.1degS) in March 2010. This paper describes the motivations for the radar location, its measurement capabilities, and comparisons of measured mean winds, tides, and gravity wave momentum fluxes from April to June of 2010 and 2011 with those by a similar radar on Tierra del Fuego (53.8degS). Motivations for the radars include the "hotspot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere (MLT) centered over the Drake Passage, the maximum of the semidiurnal tide at these latitudes, and the lack of other MLT wind measurements in this latitude band. Mean winds are seen to be strongly modulated at planetary wave and longer periods and to exhibit strong coherence over the two radars at shorter time scales as well as systematic seasonal variations. The semidiurnal tide contribute most to the large-scale winds over both radars, with maximum tidal amplitudes during May and maxima at the highest altitudes varying from approx.20 to >70 m/s. In contrast, the diurnal tide and various planetary waves achieve maximum winds of approx.10 to 20 m/s. Monthly-mean gravity wave momentum fluxes appear to reflect the occurrence of significant sources at lower altitudes, with relatively small zonal fluxes over both radars, but with significant, and opposite, meridional momentum fluxes below approx.85 km. These suggest gravity waves propagating away from the Drake Passage at both sites, and may indicate an important source region accounting in part for this "hotspot"
Tight local approximation results for max-min linear programs
In a bipartite max-min LP, we are given a bipartite graph \myG = (V \cup I
\cup K, E), where each agent is adjacent to exactly one constraint
and exactly one objective . Each agent controls a
variable . For each we have a nonnegative linear constraint on
the variables of adjacent agents. For each we have a nonnegative
linear objective function of the variables of adjacent agents. The task is to
maximise the minimum of the objective functions. We study local algorithms
where each agent must choose based on input within its
constant-radius neighbourhood in \myG. We show that for every
there exists a local algorithm achieving the approximation ratio . We also show that this result is the best possible
-- no local algorithm can achieve the approximation ratio . Here is the maximum degree of a vertex , and
is the maximum degree of a vertex . As a methodological
contribution, we introduce the technique of graph unfolding for the design of
local approximation algorithms.Comment: 16 page
- …
