13,282 research outputs found

    Space Shuttle Orbiter thermal protection system design and flight experience

    Get PDF
    The Space Shuttle Orbiter Thermal Protection System materials, design approaches associated with each material, and the operational performance experienced during fifty-five successful flights are described. The flights to date indicate that the thermal and structural design requirements were met and that the overall performance was outstanding

    Thermal protection systems manned spacecraft flight experience

    Get PDF
    Since the first U.S. manned entry, Mercury (May 5, 1961), seventy-five manned entries have been made resulting in significant progress in the understanding and development of Thermal Protection Systems (TPS) for manned rated spacecraft. The TPS materials and systems installed on these spacecraft are compared. The first three vehicles (Mercury, Gemini, Apollo) used ablative (single-use) systems while the Space Shuttle Orbiter TPS is a multimission system. A TPS figure of merit, unit weight lb/sq ft, illustrates the advances in TPS material performance from Mercury (10.2 lb/sq ft) to the Space Shuttle (1.7 lb/sq ft). Significant advances have been made in the design, fabrication, and certification of TPS on manned entry vehicles (Mercury through Shuttle Orbiter). Shuttle experience has identified some key design and operational issues. State-of-the-art ceramic insulation materials developed in the 1970's for the Space Shuttle Orbiter have been used in the initial designs of aerobrakes. This TPS material experience has identified the need to develop a technology base from which a new class of higher temperature materials will emerge for advanced space transportation vehicles

    A comparison of implicit numerical methods for solving the transient spherical diffusion equation

    Get PDF
    Comparative numerical temperature results obtained by using two implicit finite difference procedures for the solution of the transient diffusion equation in spherical coordinates are presented. The validity and accuracy of these solutions are demonstrated by comparison with exact analytical solutions

    Concentration dependence of the fluorescence decay profile in transition metal doped chalcogenide glass

    Get PDF
    In this paper we present the fluorescence decay profiles of vanadium and titanium doped gallium lanthanum sulphide (GLS) glass at various doping concentrations between 0.01 and 1% (molar). We demonstrate that below a critical doping concentration the fluorescence decay profile can be fitted with the stretched exponential function: exp[-(t/τ)β], where τ is the fluorescence lifetime and β is the stretch factor. At low concentrations the lifetime for vanadium and titanium doped GLS was 30µs and 67µs respectively. We validate the use of the stretched exponential model and discuss the possible microscopic phenomenon it arises from. We also demonstrate that above a critical doping concentration of around 0.1% (molar) the fluorescence decay profile can be fitted with the double exponential function: a*exp-(t/τ1)+ b*exp-(t/τ2), where τ1 and τ2 are characteristic fast and slow components of the fluorescence decay profile, for vanadium the fast and slow components are 5µs and 30µs respectively and for titanium they are 15µs and 67µs respectively. We also show that the fluorescence lifetime of vanadium and titanium at low concentrations in the oxide rich host; gallium lanthanum oxy-sulphide (GLSO) is 43µs and 97µs respectively, which is longer than that in GLS. From this we deduce that vanadium and titanium fluorescing ions preferentially substitute into high efficiency oxide sites until at a critical concentration they become saturated and low efficiency sulphide sites start to be filled

    The integrative framework for the behavioural sciences has already been discovered, and it is the adaptationist approach

    Get PDF
    The adaptationist framework is necessary and sufficient for unifying the social and natural sciences. Gintis’s “beliefs, preferences, and constraints” (BPC) model compares unfavorably to this framework because it lacks criteria for determining special design, incorrectly assumes that standard evolutionary theory predicts individual rationality maximisation, does not adequately recognize the impact of psychological mechanisms on culture, and is mute on the behavioural implications of intragenomic conflict

    Measuring Symbol and Icon Characteristics: Norms for Concreteness, Complexity, Meaningfulness, Familiarity, and Semantic Distance for 239 Symbols

    Get PDF
    This paper provides rating norms for a set of symbols and icons selected from a wide variety of sources. These ratings enable the effects of symbol characteristics on user performance to be systematically investigated. The symbol characteristics that have been quantified are considered to be of central relevance to symbol usability research and include concreteness, complexity, meaningfulness, familiarity, and semantic distance. The interrelationships between each of these dimensions is examined and the importance of using normative ratings for experimental research is discussed

    Surface heat flux determination: An analytical and experimental study using a single embedded thermocouple

    Get PDF
    A numerical method by which data from a single embedded thermocouple can be used to predict the transient thermal environment for both high- and low-conductivity materials is described. The results of an investigation performed to verify the method clearly demonstrate that accurate, transient, surface heating conditions can be obtained from a thermocouple l.016 centimeters from the heating surface in a low-conductivity material. Space shuttle orbiter thermal protection system materials having temperature- and pressure-dependent properties, and typical orbiter entry heating conditions were used to verify the accuracy of the analytical procedure. Analytically generated, as well as experimental, data were used to compare predicted and measured surface temperatures

    An efficiency study on obtaining the minimum weight of a thermal protection system

    Get PDF
    Three minimizing techniques are evaluated to determine the most efficient method for minimizing the weight of a thermal protection system and for reducing computer usage time. The methods used (numerical optimization and nonlinear least squares) for solving the minimum-weight problem involving more than one material and more than one constraint are discussed. In addition, the one material and one constraint problem is discussed

    Infrared organic light emitting diodes using neodymium tris-(8-hydroxyquinoline)

    Get PDF
    Copyright 2000 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Journal of Applied Physics 88, 777 (2000) and may be found at
    • …
    corecore