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SURFACE HEAT FLUX DETERMINATION

An Analytical and Experimental Study
Using a Single Embedded Thermocouple

By S. D. Williams* and Donald M. Curry	 =
Lyndon B. Johnson Space Center	 s ..»

SUMMARY

A numerical method by which data from a single embedded thermocouple can be
used to predict the transient thermal enviro-!.,'Ipm' for both high- and low-
conductivity materials is described. The results'of an investigation performed
to verify the method clearly demonstrate that accurate, transient, surface
heating conditions can be obtained from a thermocouple 1.016 centimeters from
the surface in a low-conductivity material. Space Shuttle Orbiter thermal
protection system materials having temperature- and pressure-dependent proper-
ties and typical Orbiter entry heating conditions were used to verify the ac-
curacy of the analytical procedure. Analytically generated, as well as ex-
perimental, data were used to compare predicted and measured surface
temperatures.

INTRODUCTION

The design and development of a reusable thermal protection system (TPS) for
the Space Shuttle is dependent on a detailed knowledge of the aerothermodynamic
environment to which the TPS will be exposed. The TPS thermal performance is
normally obtained from exhaustive plasma arc and radiant heating tests to es-
tablish reuse temperature and thermal response characteristics. In a previous
study by Curry and Williams (ref. 1), a nonlinear least squares method was de-
veloped for the estimation of thermal property values from experimental in-depth
temperature data. The current investigation represents the application and
extension of this previously developed numerical method to the determination
of surface heating rates and temperatures from measured in-depth temperatures.

The calculation of surface heat flux and surface temperature from an in-depth
temperature history measurement is called the inverse heat conduction problem
and has been discussed by numerous investigators (refs. 2 to 12). An excellent
discussion of previous investigations (refs. 4 to 8) for solving the inverse
problem can also be found in reference 2. In particular, Beck and Wolf (ref. 3)
presented a method of solution using least squares and future temperatures.

*Lockheed Electronics Company, Inc.



In a later publication, Beck (ref. 2) presented a technique using nonlinear
estimation in the solution of the inverse problem. Howard (ref. 9) developed
a numerical method for determining the heat flux to a thermally thick wall with

variable thermal properties using a single embedded thermocouple. His best
results were obtained for temperature measurements close to the heated surface
in conjunction with a small computing interval.

Cornette (refs. 10 and 11), in analyzing the Project Fire calorimeter data,

developed a transient inverse solution that required curve fitting of the basic
temperature data. Cornette's solution accounted for variable material proper-

ties and yielded a closed-form analytical expression for the local surface heat
flux at a given instant of time. The temperature-time data for several thermo-
couples embedded in a calorimeter plug were smoothed and the data replaced with
a polynomial equation for temperature (at a particular thermocouple location)
as a function of time. Imber and Khan (ref. 12) developed a closed-form inverse

solution for constant properties and heat flux using two in-depth thermocouple
readings. The solution was obtained by means of Laplace transform techniques

in which the input thermocouple data were approximated by a temporal power
series and a second series of error functions.

The analytical method discussed in this paper, using a single embedded thermo-
couple, accounts for variable thermal properties (as functions of temperature

and pressure) as well as for the effect of radiation losses and in-depth con-
duction. In.addition, the results can be obtained with approximately the same
computational time required to solve the thermal model using a known heat rate.

The primary objectives of this paper are: (1) to present a recently developed
numerical method by which data from a single embedded thermocouple can be used

to predict the transient thermal environment for both high- and low-conductivity

materials having temperature- and pressure-dependent properties; (2) to make a
direct comparison between analytically predicted and experimentally measured

surface temperatures; and (3) to compare the analytical procedures described
in this paper with the methods of Beck (ref. 2).

As an aid to the reader, where necessary the original units of measure have

been converted to the equivalent value in the Syst4me International d'Unites
(SI). The SI units are written first, and the original units are written par-
enthetically thereafter.

SYMBOLS

A,B,C	 quadratic coefficients
a,b,c,d	 coefficients of square temperature matrix
Cp	specific heat of material at constant pressure

E	 thermocouple depth
f	 function defined by equation (6)
h	 function defined by equation (l)
i	 individual measurements 	 =_
k	 thermal conductivity of material

I.

u

f
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L thickness of material
material designator

M Beck's intermediate temperature data
P point

q heat flux

gconv
convective heating rate

net
net heat rate

r Beck's future temperature data
T temperature
T' temperature at end of time step
Tr calculated value of temperature at node r

TC thermocouple
t time
x distance or function defined by equations (12) and (14)
y function defined by equations (12) and (14)
a thermal diffusivity
A denotes change in quantity
:At computing time, interval
-Ax node thickness
AT dimensionless time step
a convergence tolerance 	 S'

e emissivity
n arbitrary value
P density of material
a Stefan-Boltzmann constant

Subscripts:

i location
J,n thermocouple location
m,o,l,r node identifiers
s,o surface

Superscripts:

' future time step
* known or desired value

THEORETICAL FORMULATION

The heat conduction equation for a one-dimensional thermal model is

P 
Cp at	 ax	 (k ax)	 (1)

3
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A solution can be readily obtained if the boundary conditions and the initial
temperature profile are known. However, when the thermophysical properties are
temperature dependent, equation (1) is nonlinear and recourse is usually made
to numerical methods. An implicit numerical solution (first order in time)
has been used in this investigation.

It is assumed that a set of thermocouples TCi has been placed at known loca-

tions x3 in the material. This assumption implies that a set of interior

temperature-time histories T(x 3 ,t) exists. If the temperature data are avail-

able at xj , then by solving the boundary condition

k 
aT

I
ax	

=-q	 (z)	 -
x=x^

for q together with the unknown temperatures, the heat rate at location x3

can be found directly (ref. 13). 1 If the temperature-time history data are
available at the surface, then the convective heating rate can be found from

•	 4
gnet ' gconv - caTs 	 (3)

where 
gnet 

is the total heat rate input, Qconv is the convective heating

rate, c is the total hemispherical emittance of the surface, a is the
Stefan-Boltzmann constant, and Ts is the temperature at the surface.

The problem in solving for the heating rate at the surface when the temperature
at the surface is unknown is that one of the required boundary conditions is
unavailable. There is no difficulty in solving for temperatures at any lo-
cation between two thermocouples because both boundary conditions are known.

JSC Technique

A technique has been developed at the NASA Lyndon B. Johnson Space Center (JSC)
to solve for the heat rate at the surface at each time step rather than to solve
for the entire history. The technique is iterative; initially, a surface energy
balance correction is used, followed by one step using the method of false
position {regula falsi} (ref. 14) and then a quadratic fit. To derive the
technique, it is necessary first to examine the finite difference approximation
at the surface.

^ l If the thermocouple is located on the surface, the 
gnet 

value can be

calculated directly from the tridiagonal matrix.

4
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T	 ao Cp dxo - T1 	a,	 ^, o
	

^,

gnet AX0	Ax 	 At 
	

(TOO - To)	 (4)

22L-10 +2^Tc1

where At is the interval of computing time, TO denotes the temperature value
at time t + et, o and 1 are the node identifiers, and ax is the node
thickness. This form of the equation is for a composite material where P. is
the material designator.

~	 Expressions (1) and (4) can be rearranged into the general tridiagonal form

&J41 + 
bmTm + cmTm-1 + dm ' 0	 (5)

At the surface, one can define a function

Rao RCp Axt Tr,
f - 

aoT1 + boTo +	 2 At	 — + gnet 0	 (6)

At eaO time step, it is desired that

h=Tj-Tj*= 0	 (7)

where

Iao Rip ax Jo
f* = aoTi* + boTo* +	

2 At	 + gnet* " 0	 (8)

Thus, h may be rewritten as

f`
	

h - ao (f - f*) - 
boTo - T

o
*) - (gnet - gnet*) = 0	 (9)

Because both f and f* are zero, this results in

-bo (Ta - To
*) - (`'net - gnet*) 

a 0	 (10)

t
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gnet* gnet + bo (To - T
o
*) - gnet + b

o AT;	 (11)

(The quantity &To may be approximated by the difference between the predic-

ted temperature and the measured temperature response at the thennocquple loca-
tion due to the next step in the algorithm.) The initial value of gnet is

usually chosen to be the converged value for the previous time step. For the
first time step, an arbitrary value such as 1 may be used.

Because the thermocouples generally are located internally rather than at the
surface, application of the surface energy balance correction will result in a
monotonic approach to the desired solution, but convergence is very slow and
may require an excessive number of iterations. Therefore, as a practical so-
lution, it is necessary to switch to an alternate technique. The method of
false position can be used to obtain the next estimate of the solution from

yi+1 = (xi-l yi - xiyi-1)/(xi-i - x
i)	 (12)

where y i = (gnet ) i' x i	[Tr - 
Tn (t)]i, Tr is the calculated value of the

temperature at node r corresponding to the thermocouple location, and Tn(t)

is the temperature given by the thermocouple at that time.

The iterative process is halted when

JTr - Tn*(t)li d I Tn( t )	 (13)

where 6 is the relative convergence tolerance.

If convergence has not been achieved after using the regula falsi approximation,
it can be obtained by using the quadratic fit. Assuming three points:

Pl (x l ,y l ), P2(x2,y2), and P
3 (x 3 ,y3 ), a juadratic equation can be formed to

include all three points. The equation is

y=Ax2+Bx+C
	

(t4)

where A, B, and C are quadratic coefficients. By substituting each of the
three points into equation (14), one has a System with three equations and
three unknowns (the coefficients A, B, and C)•

6
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After the coefficients have been determined, a point on the quadratic curve may
be found. The points have been formed such that solution is at y - C or at
the point P4(0,C).

If, in evaluating the original function with C to obtain a new x 4 , the solution

is not within the desired tolerance as required by equation (13) (i.e.,

1x
4 +< 61Tn(t)l, P4 is substituted for one of the previous points (e.g., one

with the largest jxj), and the coefficients are determined again. The process
is repeated until the desired solution is obtained. Normally, this process re-
quires only one quadratic ; teration, since the surface energy balance correc-
tion and regula falsi techniques were converging to the desired solution.

Numerical difficulties arise in determing the surface heat rate or the surface
temperature from data based on interior thermocouples. This difficulty is
partly due to the timelag imposed on the system resulting from the finite
distance between the surface and the thermocouple location. Another factor
is the damping of surface changes at the thermocouple location. Other errors
that may arise are due primarily to the method used for approximating the
thermal model, the magnitude of qnet' 

any the magnitude of the thermocouple

temperatures. Of course, it is assumed that time steps compatible with the
physical system would be used for the thermal model. It should be noted that
both the net heating rate and the surface temperature have unique solutions,
whereas the convective heating rate is dependent on the assumed value for
emissivity.

Beck's Method

Beck's method (ref. 2) differs from the JSC method both in the convergence
technique and the amount of temperature data that may be used to calculate the
net heating rate. As with the JSC method, the tho

'
 rmal response of the material

is calculated, from surface to backwall, using an -assumed heating rate. Beck,
however, allows for the use of measured temperatures at times other than the
current time. That is, with Beck's method, one can use intermediate temperature
data at m - 1 tirre steps, future temperature data at r - 1 time steps, or
both.

Beck calculates m•r temperature differences, in a least-squares sense, to
calculate a correction to the net heating rate. The iterative process is
halted when the change in the net heating rate satisfies a prespecified con-
vergence criterion. This is stated mathematically as

(15)

where 41 is the change in the net heating rate at the i-th iteration,
qi-1 is the net heating rate used at the iteration i - 1, and d is the

relative convergence criterion.

r



It should be pointed out that although the convergence criteria in equations
(13) and (15) have the same effect, their relative magnitudes differ. A con-

vergence criterion of 1 x 10
-5
 in equation (13) corresponded to a convergence

criterion of 1 x 10-3 in equation (15) when comparing analytical test case
results.

Efficiency Comparison

There is a significant difference between the computational cost in utilizing
the JSC method and in utilizing Beck's method. Beck's method is designed to 	

r..

solve a linear problem in one iteration, whereas the JSC method is designed
to solve a nonlinear problem in two iterations. As prev;_usly mentioned, the
JSC riethod usually converges in three evaluations of the implicit tridiagonal
solution at each time step, and, if further refinement is required, each ad-
ditional iteration requires only one additional evaluation. On the other hand,
Beck's method requires 4•m-r evaluations of the implicit tridiagonal solu-
tion for the first iteration, and 2-m•r evaluations for every iteration
the:^after. Thus, the two methods require the same number of evaluations if
t,C — ly if the JSC method converges at the end of three iterations and Beck's
n,: jd with m = 1 and r = 1 can converge in one iteration.

ANALYTICAL VERIFICATION

The numerical methods discussed in the previous section have been evaluated for
typical Space Shuttle Orbiter materials and environments. In general, the
Space Shuttle Orbiter reusable TPS consists of reusable surface insulation
(RSI) for areas with maximum surface temperatures of less than 1533 K
(2759.4° R) and a reusable carbon-carbon (RCC) where surface temperature ex-
ceeds 1533 K (2759.4° R). The thermophysical properties used in this investi-
gation are presented in table 1.

The analytical data were obtained by running an implicit, one-dimension.,,

thermal model usino known boundary conditions. 2 The resulting temperature
history from one of the internal nodes was then used by the inverse programs,
JSC and Beck methods, as a boundary condition. This simulates the temperature
history that would be provided from thermocouple data in an experimental case.
The inverse programs, in turn, used this transient data to determine the now
unknown surface conditions, the net heating rate and temperature. This allowed
for a direct comparison between the known convective heating rate and that
predicted by both Beck's method and the JSC method.

Comparisons were made for two cases. The first case consisted of a linear
thermal model (constant thermal properties and a surface emittance of zero)

Add ditional analytically generated data for the RCC are presented in reference
15.

8
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subjected to a triangular heating rate. This case is similar to the one used
by Beck in reference 2, and served to verify the correct implementation of his
algorithm. The second case consisted of a nonlinear thermal model (temperature-
dependent thermal properties and a nonzero surface emittance) subjected to a
heating-rate history typical of a Space Shuttle Orbiter entry.

Linear Model

The thermal model consists of a 5.08 centimeters (2 inches) of aluminum with a
thermocouple on the backwall. Since this is a linear problem, the surface emit-

=	 tance was set to zero and constant properties were used. The thermal proper-

ties were: density - 2851.29 kg/m3 (178 lb/ft3 ), specific heat - 836.80
J/kg-K (0.2 Btu/lbm °R), and conductivity - 145.28 W/m-K (84 Btu/ft-hr-°R). An

initial temperature of 294.44 K (530 0 R) was used, and the backwall was in-
sulated; i.e., adiabatic.

The heating rate, q, was given by

(Btu/f t2 _sec)	 (W/m2)

(ht)5	 1.1348931 x 104 (kt)5	 0 < t < 24

q	 (24 - kt)5	 1.1348931 x 104 (24 - kt)5	 24 < t < 48

0	 0	 48<t

where t is the transient time in records. As with the case that Beck re-
ported, it was assumed that the thermocouple was on the backwall of the alumi-
num. A time step of 2 seconds was used to correspond to the dimensionless

3	 time step of 0.05 used by Beck. The dimensionless time step is given by:

AT = a At/E2

where AT is the dimensionless time step, a is the thermal diffusivity, At is
the time step used in the thermal model, and E is the thermocouple depth.

The results of this investigation are summarized in figure 1 and table 2. From
table 2, it can be seen that for Beck's method with m = 1 and r = 1, the

average error3 for a convergence criterion of 5 x 10-3 on the net heating rate
falls somewhere between the errors calculated for the convergence criteria of

n
3The average error equals T

niq1)2, where qi is the calculated
i=1

convective heating rate, qi is the actual convective heating rate, and n is

the total number of individual measurements i taken.

9
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10"6 and 10`7 on temperature using the JSC method. Table 2 and figure 1 show
that with m = 1, the use of future times did not improve the accuracy. Only
when the intermediate times were used (m = 2) did the accuracy im prove with
use of future times. For m = 2 and r - 2, the method became unstable, and
none of the results using intermediate times (m = 2) were as accurate as when
no intermediate times (m = 1) were used. The only methods that were able to
handle the abrupt change in curvature in the heating were the m = 1 and
r = 1 case for Beck's method and the JSC method.

Nonlinear Model

The RSI thermal model (fig. 2) consists of 5.OP centimeters (2 inches) of pri-
mary Shuttle insulation. The boundary conditions are assumed to be a heat
rate on the surface and adiabatic on the backwall. The initial temperature is
294.44 K (530° R). An emissivity of 0.8 on the surface, radiation to space

(0 K or 0° R heat sink), and a constant 101-kNJm 2 (1 atmosphere) pressure were
used. The thermophysical properties used can be found in table 1. The ref-
erence heating rate used (fig. 3) is typical of that expected for Shuttle
Orbiter entry. The effects of the convergence criterion and the use of future
times for Beck's method can be seen in table 3.

From t ble.3, it can be seen that for Beck's method with no future times (r = 1)

and a convergence criterion of 5 x 10-3 on the net heating rate, the average

error falls between the errors calculated for the convergence criteria of 10-4

and 10-5 for the JSC model. Reducing the convergence criterion on Beck's

method to either 1 x 10-3 or 5 x 10-4 requires the JSC convergence criterion to

be reduced to either 10 -6 or 10-7 . It was observed that very little advantage

was gained .in reducing the convergence criterion to these lower values (5 x 10-4

for Beck and 10-7 for JSC).

When future times (r > 1) were used for Beck's method, the average error for a
given convergence criterion was two to three orders of magnitude greater than
when no future times (r = 1) were used. This indicates that for analytical
data, no advantage is gained by using future times.

Another objective in this analytical investigation was to determine the effects
of thermocouple depth, xj , and the convergence criterion, d, on the accuracy

in the calculation of the heating rate. Using the JSC method, the range of

values for d was 10-4 , 10-5 , 10-6 , and 10-7 with thermocouple depths of
0.254, 0.508, 0.762, and 1.016 centimeters (0.1, 0.2, 0.3, and 0.4 inch) from
the heated surface. The effects of the convergence criterion and thermocouple
depth on the average error can be seen in table 4. Basically, the results in-
dicate that for each additional 0.254 centimeter (0.1 inch) in depth of the
thermocouple, the convergence criterion must be decreased by a factor of 10
to maintain the sa.! ►e relative accuracy. (It should be noted that a thermocouple
depth of 0.254 centim. tar (0.1 inch) corresponds to a dimensionless time step

10
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of 0.4, whereas a thermocouple depth of 1.016 centimeters (0.4 inch) corre-
sponds to a dimensionless time step of 0.02.)

EXPERIMENTAL DATA

Thermal evaluation tests have been conducted in the NASAJJSC Radiant Heat Test
Facility (RHTF) on test models fabricated from RSI and covered with a high-
emittance surface wash. The test specimen consisted of a set of staggered
33.02- by 33.02-centimeter (13 by 13 inch) tiles, 5.08 centimeters (2 inches)
thick, bonded to a strain isolation pad (SIP), which, in turn, was bonded to
an aluminum plate attached to T-bars. There was no spacing between the tiles;
i.e., a no-gap configuration. The test environment was designed to simulate
entry heating and pressure conditions.

The Thermal Model

The thermal model consisted of 5.08 centimeters (2 inches) of RSI subdivided
into approximately 20 nodes. This subdivision was accomplished such that node
centers were forced at thermocouple locations. The boundary conditions were

heating.at the surface and adiabatic at the backwa11 4 . The wasr on the surface
was ignored since both its thermal properties and depth of penetration were

unknowns . The initial temperature profile on the interior nodes was determined
from a linear interpolation of the initial interior thermocouple test data. It
was assumed that the temperature from the last thermocouple remained constant
to the backwall. The initial surface temperature and intervening node temp-
eratures were obtained by linearly extrapolating the temperature from the first
two interior thermocouples.

Th^ of the adiabatic boundary condition for this test environment and
specimen has been justified by separate analysis. This analysis compared the
surface temperatures predicted by using a measured temperature history boundary
condition at the backwall to those predicted by using an adiabatic boundary
condition. Temperature differences were not observed until cool-down had been
initiated, where the model using the adiabatic boundary condition under-
predicted the model using a temperature history boundary condition. The maxi-
mum temperature difference was less than 11 K (20° R).

5The surface wash was used to provide an emittance of approximately 0.9. It is
assumed that the penetration is not deep and that the surface temperature is
more dependent on the emittance of the surface than any material property
characteristics exhibited by the wash.
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Test Procedure and Identification

Thermocouple plugs were installed in the center of the end tile in each quadrant
and in the center of the T-bar panel (approximately 127 by 152.4 centimeters
(50 by 60 inches)), as shown in figure 4. Each thermocouple plug was 3.81
centimeters (1.5 inches) in diameter with five thermocouples. The thermo-
couples were located at 0.0, 0.381, 1.27, 2.286, and 3.81 centimeters (0.0,

0.15, 0.5, 0.9, and 1.5 inches) from the heated surface6.

The T-bar panel was placed in the chamber with the RSI surface directed toward
the radiant lamps. The lamps were graphite heater rods encapsulated in a ni-
trogen environment. Heating was controlled by monitoring a set of 13 control
thermocouples lying midway between the thermocouple plugs in the first and
fourth quadrants and the center thermocouple plug. During the test, the chamber
pressure data and thermocouple data were recorded at 1-second intervals on
magnetic tape. This magnetic tape constitutes the main data base used in this
report to verify the numerical method.

Data Smoothing

The data that appear on the magnetic tape are generally too rough to be success-
fully used.for determining the surface conditions. To smooth the data, re-
course is made to a least squares procedure utilizing orthogonal polynomials.
The polynomial is fitted over successively overlapping data sets to obtain a
continuous temperature function. Finally, a standard deviation of temperature
is taken of the n•-^asured and smoothed data for each thermocouple to ensure that
the smoothed data conform to a desired tolerance. The data from a thermo-
couple plug were rej,.cted if the standard deviation of temperature was greater
than 11 K (20 0 R).

This data smoothing operation was performed for the surface data as well as the
interior data to allow for a consistent comparison between measured and calcu-
lated values of the surface temperature. This permits a statistical evaluation
of the test data prior to attempting to analyze test results, in addition to
reducing computer time on worthless data.

Results

Only four of the five thermocouple plugs shown in figure 4 are presented since
the center thermocouple plug, 5R, failed to meet the standard deviation re-
quirement. The four in-depth thermocouples which provided the data used for
temperature prediction were labeled 1R14, 2R21, 3R20, and 4R7. The correspond-
ing surface thermocouples to which the predictions were compared were 1R13,
2R20, 3R19, and 4R6.

6The lead thermocouple was actually embedded slightly into the material and was
below the surface. Its distance from the surface is unknown.

12



	

ti 	 The surface temperatures predicted by the JSC method were based on smoothed

	

#	 data, whereas the surface temperatures predicted by Beck's method were based
on the "raw," unsmoothed data using one (r = 2) and two (r - 3) future times.
The surface temperature predictions by the JSC method and Beck's method (one

	

:-!	 future time for thermocouple 1R14 can be seen in figure 5. During the first
few steps, the JSC method oscillated and tt;en the surface temperature predic-
tions became smooth; whereas with Beck's method, the initial steps were smooth
with oscillations occurring later throughout the data. When using two future
times with Beck's method, these oscillations were still present (fig. 6) but
the magnitude was reduced. The oscillations observed with Beck's method can
be attributed to using raw, unsmoothed data. For thermocouple 2R21, no oscil-
lations were observed for the JSC method. Beck's method using one future time
(fig. 7) displayed oscillations at several times in the surface temperature
predictions. These oscillations were damped considerably when two future times

'	 were used (fig. 8). Essentially, the same characteristics were observed for
thermocouple 3R20 as for 2R21 (figs. 9 and 10).

The surface temperatures predicted by the JSC method and Beck's method for one
and two future times for thermocouple 4R7 can be seen in figures 11 and 12,
respectively. As with 1R14, the 4R7 curve for the JSC method exhibited initial
oscillations and became very smooth; whereas with Beck's method, the initial
phase was smooth, but large oscillations developed later. As with the previous
cases, the use of temperatures at two future times damped the oscillations
observed with one future time.

In comparing the predicted surface temperatures to those measured on the sur-
face, it was observed that the predicted temperatures were consistently higher
than those measured. This overprediction is attributed to the embedding of the
lead thermocouple.

Overall, the agreement between the JSC method and Beck's method was good with
only major discrepancies when oscillations were observed. With the JSC method,
the only oscillations observed were during the initial startup phase. Beck's
method did not display any oscillations during this phase, but oscillations
did occur later in the data for all four tests. This was due to the thermo-
couple recording errors that are always present. These results demonstrate
the desirability of smoothing the thermocouple data prior to predicting sur-
face temperatures. With smooth data, no advantage is gained by using future
times. This is illustrated in figure 13, where a comparison using Beck's
method with two future times is made between smoothed and raw data during the
first 200 seconds of the test for thermocouple plug 1R. As was mentioned, the
computational cost in using the JSC method is much smaller than the cost of
using Beck's method with future times (table 5). This holds true even though
it is necessary to smooth the thermocouple data prior to using them for surface
temperature predictions. Other than the problems with the initial oscillations
that occurred with plugs 1R and 4R, there was no advantage in using future
times. It should be mentioned that if the data were noisy at the initial time,
Beck's method would have oscillated then also.

13



CONCLUDING REMARKS

An inverse solution technique using a single embedded thermocouple has been
developed for predicting the transient thermal environment to which the Space
Shuttle Orbiter thermal protection system is exposed during entry. The accu-
racy of the numerical method has been demonstrated for a low-conductivity
material by comparison with experimental and analytical data.

A comparison was also made between the method developed by Beck and the method
developed at JSC for solving the inverse problem using analytical and experi-
mental data. The results of this investigation indicated that no advantage will
be gained by using Beck's method with future temperatures. The procedure de-
veloped is quite general and has been incorporated into a previously developed
program used to compute thermal conductivity values from experimental data.
Thus, a capability now exists for computing surface conditions (heat flux
and/or temperature) and thermal conductivity values using the data from a sin-
gle experiment.

Lyndon B. Johnson Space Center
National Aeronautics and Space Administration

Houston, Texas, June 10, 1977
986-15-31-04-72
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TABLE 2. - COMPARISON OF THE AVERAGE ERROR IN DETERMINING THE

HEAT RATE FOR THE LINEAR PROBLEM

Method Iteration
Count

Convergence
criterion (a)

Avera a error

Btu/ft2-sec W/m2

JSC 72 1 x 10-4 2.405 x 10-3 2.729 x 101

JSC 72 1 x 10-5 2.405 x 10-3 2.729 x 101

JSC 72 1 x 10-6 2.405 x 10-3 2.729 x 101

JSC 84 1 x 10-7 4.642 x 10-4 5.268 x 100

Beck {m = 1, r = 1) 98 5 x 10
-3

6.590 x 10
-4

7.479 x 100

Beck (m = 1, r = 2) 192 5 x 10-3 1.319 x 10-1 1.497 x 103

Beck (m = 1,	 r = 3) 288 5 x 10-3 2.256 x 10-1 2.560 x 103

Beck (m - 2, r = 1) --- 5 x 10-3 Unstable Unstable

. Beck (m = 2, r = 2) 384 5 x 10-3 2.802 x 10 -1 3.180 x 103

Beck (m - 2, r = 3) 576 5 x 10-3 3.126 x 10 -1 3.548 x '?03

18
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TABLE 3. - COMPARISON OF THE AVERAGE ERROR IN DETERMINING THE

HEAT RATE FOR THE ANALYTICAL RSI TRAJECTORY

Method Iteration
Count

Convergence
criterion (6)

Average error

Btu/ft2-sec	 W/m2

JSC 545 1 x 10-4 1.372 x 10-2 1.557 x 102

597 1 x 10-5 6.954 x 10"4 7.892 x 100

600 1 x 10-6 2.587 x 10
-4 2.936 x 100

600 1 x 10-7 2.587 x 10-4 2.936 x 100

Beck (m=1, r=1) 780 5 x 10-3 4.539 x 10-3 5.151 x 101

798 1 x 10-3 2.618 x 10-4 2.971 x 100

802 5 x 10-4 2.603 x 10-4 2.954 x 100

Beck (m=1, r=2) 1572 5 x 10-3 2.309 x 10-1 2.620 x 103

1600 5 x 10-4 2.310 x 10-1 2.622 x 103

Beck (m=1, r=3) 2340 5 x 10-3 3.141 x 10-1 4.246 x 103

2400 5 x 10-4 3.741 x 10-1 4.246 x 103

S
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TABLE 4. - COMPARISON OF THE AVERAGE ERROR IN DETERMINING THE HEAT RATE FOR

THE RSI TRAJECTORY AT DIFFERENT THERMOCOUPLE DEPTHS USING THE JSC METHOD

Lead thermocouple
deDth.

Convergence

criterion (6)

cm in.

0.254 0.1 1 x 10-4

1 x 10-5

1 x 10-6

1 x 10-7

.508 .2 1 x 10-4

1 x 10-5

1 x 10-6

1 x 10-7

.762 .3 1 x 10-4

1 x 10-5

1 x 10-6

1 x 10-7

1.016 .4 1 x 10-4

1 x 10-5

1 x 10-6

1 x 10-7

Average error

Btu/ft2-sec
WIm2

1.372 x 10-2 1.557 x 102

6.954 x 10-4 7.892 x 100

2.587 x 10-4 2.936 x 100

2.587 x 10-4 2.936 x 100

5.502 x 10-2 6.244 x 102

7.228 x 10-4 8.203 x 100

2.823 x 10-4 3.204 x 100

2.564 x 10-4 2.910 x 100

3.484 x 10-1 3.954 x 103

1.752 x 10-2 1.988 x 102

2.053 x 10-3 2.330 x 101

4.107 x 10-4 4.661 x 100

1.442 x 100 1.637 x 104

1.396 x 10-1 1.584 x 103

2.354 x 10-2 2.672 x 102

1.523 x 10-3 1.728 x 101

20

-I



41-1	 13 411E Fick- "cGi f.111V a rG rtac^.	 r -err	 v.	 ..	 . s

relative convergence criterion.

7

1

TABLE S. - COMPARISON OF THE ITERATION COUNT IN DETERMINING THE HEAT RATE

FOR THE EXPERIMENTAL TRAJECTORY USING THERMOCOUPLE 1R14

Time,
sec

Method

JSCa Beck  Beckb Beckb
m=1,r=1 m=1,ra2 m=1,r-3

4100 15 20 44 66

4200 75 98 228 318

4300 135 174 392 546

4400 195 250 548 786

4500 255 328 708 1026

4600 314 404 860 1266

4700 374 478 1020 1506

4800 432 554 1180 1734

4900 492 640 1340 1974

aUsed smoothed data.

bUsed raw data.
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