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A COMPARISON OF IMPLICIT NUMII:RICAL

MVT}IODS FOR SOLVING THE TRANSIENT

SPHERICAL DIFFUSION E,40ATIOId

By Donald M. Curry
Lyndon H. Johnson Space Center

SUM!,1AR Y

Comparative numerical temperature results obtained by using two implicit
finite-difference procedures for the solution of the transient spherical heat-
conduction equation are presented. The strongly implicit procedure is com-
pared to the more standard alternating-direction implicit procedure by using
a two-dimensional solid spherical model. The numerically generated tempera-
ture results obtained by using the strongly implicit procedure and the
alternating-direction implicit procedure Vre compared with exact solutions to
assess the relative accuracy and efficiency of the two numerical methods.
Special attention was given to the solution in the regions of singularities
associated with the governing partial differential equation. For the examples
solved, the numerical results ob^ained by a modified version of the strongly
implicit procedure and by the alternating-direction implicit procedure are
in close agreement with the exact solution.

INT 3DUCTION

Numerous authors have discussed the various numerical methods available
for solving the transient diffusion equation. Solutions to the diffusion
equation by means of n1z'ic,ri.cR1 methods are required for a wide variety of
design/development problems &ssociated with the aerospace, petroleum, and
chemical industries.

Trent and Welty (ref. 1) presented a good summary of numerical methods
for solving transient-heat-conduction problems. However, they did not include
discussion of a recently developed iterative technique (Stone, ref. 2)
called the strongly implicit procedure (SIP). The SIP was shown to have
several advantages over other implicit numerical techniques in solving large
sets of algebraic equations that arise in the approximate solution of multi-
dimensional partial differential equations. Weinstein et al. (ref. 3) have
used the SIP successfully to solve systems of equations arising in multi-
phase, two-dimensional reservoir flow problems. The SIP has been used by
Curry (ref. 4) in the solution of two-dimensional heat and mass transfer in
porous media. Steen and Ali (ref. 5) compared the SIP algorithm with the



more conventional implicit method in the solution of the nonlinear partial
differential equation for the flow of a real gas in two dimensions. However,
few two-dimensional numerical solutions of the transient-heat-conduction
equation for both spherical and cylindrical coordinates can be found in the
literature. Albasiny (ref. 6) presented an implicit numerical solution for
a cylindrical heat-conduction problem, including the effects of the singularity
at the center of the solid. Kee (ref. 7) developed a finite-difference algo-
rithm for the diffusion equation for a solid sphere.

In this report, the SIP is compared with the more conventional

.o	 alternating,-direction implicit procedure (ADIP) (ref. B) by us'ng a two-
dimensional spherical heat-conduction model. The temperature results obtained
are compared to exact solutions of the spherical heat-conduction equation for
various boundary conditions. Attention is given to the adequacy of the finite-
difference representation in the neighborhood of the singularities located at
the geometrical center, r = 0, and along the boundaries, m = 0, n.

SYMBOLS

A

A, B, C, D, E, Q parameters kncawn from previous time level and previous
iteration

C 
	 specific heat

k	 thermal conductivity

m, n	 iterative variables used in equation (14)

q " '	 volumetric heat source (sink)

R	 outer sphere radius

T	 temperature

T'	 unknown temperature in difference equations

t	 t i me

r, m, 0	 spherical space coordinates

X s y	 rectangular space coordinates

y	 iteration parameter

P	 density



F

W

0-direction node location

r-direction node location

x-direction

y-direction

indicrtes parameter m. .ext time step or iteration

.

Subscripts

i

x

y

Super4cript

THEORETICAL MODEL

The transient-heat-conduction equation in spherical coordinates, with the
assumption of constant thermophysical properties, is given as

aT 1 a2 (rT)	 1	 a 
(sin

aT 1	 ]	
a 2

pCp at - k r	 2 + 2	 a^ 
	

3^	
+ 2	

2	
+ q' r r (1)

	ar 	 r sin Q	 r sin t ae

where p is density; r, m, and a are spherical space coordinates, defined
in figure 1; T is temperature; t is time; k is thermal conductivity; C
is specific heat; and q " ' is volumetric heat source.	 p

If the temperature field has azimuthal symmetry, then

a 
2 
T = 0	 (2)

ae2

Equation (1) can then be written in two dimensions as

r

	

ar _ 	 a ^ T + 2k all' +	
in	 + off

pCp at	
k 

art
	 r ar	

r2sin	
a^ 

s	
a^	 (3)

This two-dimensional unsteady heat conduction in the spherical domain is
bounded by

0 < r < R

3



and

0 < m < x

with the boundary and initial conditions as

T(H, m, t) = f 1 (m, t)
	

(4)

where K is the outer sphere radius.

In formulating the boundary conditions, it should be noted that equation
(3) is singular at r - 0 and for 0 - 0, n. The boundary condition
represented by equation (4) permits a sphere with a variable surface tempera-
ture from 0 - 0 to m = n (i.e., a sphere that is hot at the top and cold
at the bottom). This variation obviously will result in a temperature
gradient at r = 0. For this analysis, it is assumed that

Tr0, r = 0	 (i)

Equation (5) is strictly true only on m = n/2.1

On the assumption of symmetry along 0 = 0, r, then

aT = 0, m = 0, n	
(6 )

TO

The initial condition is

T(r, m, 0) - f2 (r, m)	 (7)

Equations (3) through (7) are the governing relations used in this
investigation of the SIP and ADIP numerical procedures.

1This assumption of aT/ar = 0, r = 0, for all m values will be
discussed in a subsequent section of this report.
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When the sphere is solid rather than hollow, n singularity exists at
r = 0. At r = 0, the terms

k ar 
and 

2 
k	

d© sin
	 `^

r	
^

r sin	
a	 ao )

are indeterminate. These terms can be evaluated by using L'Huspital's rule

(ref. 9 ). 
2

I

3
	

(IT

 aT	 2k ar (57)	 32T
lim —	 = lim •	 = 2k
r+0 r dr
	 r+0	

ar(r)
	 art

and

a	 k	 !— [	 (sin

lim 	 ka (sill 	 = 1im 
ar sinaO a¢,1^

	

r•0 r2Bin m 30 \
	 ^O /	

I-0

2 
^ k

ar
t sin m Cag (sin m 

3m>>^

	

lim	 ?	 =0
r-0

Likewise, a singularity exists at ^ = 0, r in ;.he term

k	 a(sin

	

r 
2 
s i n m aQ `	 a^J

2For the limits to exist, it is required that

	

An	
Dosin m DO 1 = 0, r = C

' [
3r sin

	a^ (sin ^ 741)= 0, r = 0
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;i 
Irsin m 3T1

am	 2 am C	 am 1

l im	 L k	 a^ Ce► in m a ' )1
m^0, n [r sin m	 J

= lim
m^0 am (sin m)

. 
6-

r

Application of L'Hospital I s rule to this term yields

2k a2T
r2 a02

Therefore, at the singularities,

2k aT a 2k a2	 r = 0	 (8a)
drr	 ar2'

k	 a(sin ^ aT) = 0, r = 0	 (9b)
r2sin	

a \	 am

and

2
k	

am Cain m aQ ) 	
22 

a 2,	 = 0, n	 (8c)
r ` sir	 r am

The singularity at r - 0 can also be eliminated by approximating the center

in a Cartesian form'lation. 3 This approach is discussed by Smith (ref. 10).
A related question concerning a singularity for the cylindrical proble ,il is

discussed by Albasiny (ref. 6). A third met;iod of eliminating the singula.~ity
at r = 0 is to simply assume that a small but Finite radius exists at the
center; i.e., hollow-sphere approximation. All three approaches were examined
in this investigation and will be discussed in a subsequent section of this
report.

3The singularities at r = 0 and m = 0, n can also be eliminated by
not specifying node points on the boundaries.
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1

IMNL.ICI DIF'F S-1ENCE EQUATION FY)RMUI.ATION

Equt►tion ( 3) describes the heat transfer within a spherical region, and a
solution is achieved by approximating the partial derivtt tiven with the use of
suitab l e finite-difference expressions involving the independent and dependent
variables. The two-dimensional bpheri ,_al region with an r, m grid system
imposed Is shown in figure 2. An implicit central-difference equation for
each grid point (1, J) within the specified region can be written as

	

TI..: - Ti,j	
T1,,^1 - 2T

i,.l + Ti,.1
PC P 	 At	 = ki•,1	 (Ar)2

+ ^!	 (Ti.j+1	 T1,j-1

	

ri ll 	 2 Ar

•t	 r	 t

+ k. LAi - 
Z i+l. j - 2T 1

.^ ♦ T1-1.

r	
2

	

i 
•J	

(Am )

+ kij cos mi., T i +1,.] - 
TI -1.j

r2	
sin m i • J	 2 Am

	

+ gttt	 (9)

where TO is the unknown temperature. Equation (9) can be written as

k	
kii.^	

Cos ^i,^	 ki	 ki

	

r2 (A^D) 2 + r2sin m	 (2 AO) Ti`1..^
	 (Q

_. ^^ + ri,
^a.^r ii•j+1

2ki
,.] +	 2k

l.^ 	 + P̂ 	 k^,.^ 	 ki.^ cos

	

2	 2	 2	 At	 1,^	 2	 2	 2 
(Ar)	 ri•,(Am)	 r(A^)	 rig, sin m 	 (2 A0)

k_ i srL_ ` k_ i t1_	 _	 _
 PC

+	 (Ar)2	 r 	
Ar l i,^ -.i	 -qi•.l	

At TI• ,	 (10)
•3

Rewriting equation (10) ,;ields



yam.`	 t^	 i	 .,r w.,	 9;rv:.3.r ^:a^n x'9o.r'4 g+f^,L

Ai Ti 
J-1 

+ Bi JTi-1 J + Ci J
Ti + Di JTi+1 J + E

i JTi J+1 
C Qi J (11)

Equation (11) has five unknown temperatures per grid point (i,J). The
values of A, B, C, D, E, and Q are known on the basis of the previous
time level and/or the previous iteration. A set of equations similar to
equation (11) can be written for all ij grid points within the region and

on the boundaries. 4 This matrix of equations can then be inverted to yield
the unknowns, 

Ti,J• 
For large systems of equations, this matrix solution can

 become very time consuming.

NUMERICAL SOLUTION TECHNIQUE

Stone (ref. 2) developed the SIP, an iterative method for solving sets
of algebraic equations that occur for multidimensional systems. This method
has been used successfully in solving problems involving two-dimensional,
steady-state heat conduction, as well as multidimensional flow in a petroleum
reservoir (ref. 3). The foundation of the SIP calculation method is based on
the approximate factoring of the five-diagonal matrix (five nonzero elements
in each row of matrix) generated by equation (11) into three-diagonal upper
and lower triangular matrices. The detailed mathematical reduction process
required to derive the upper and lower triangular matrices is presented by
Stone (ref. 2). The equations used in the SIP algorithm to solve for the
unknown variable T" J , together with the boundary condition restrictions, can

be found in references 2 and 3.

A second method used in the solution of equation (11) is the ADIP
(Peaceman and Rachford (ref. 8)), which reduces the number of unknowns to
three, as obtained for simple, one-dimensional problems. Basically, the ADIP
solves the equations in one direction, with the dependent variable in the
second dimension assumed constant over the time interval. As an example,

consider equation (11) for the first time step, in the ^ direction.5

	

BTi-1
,J + CTI
	 + DTi+1,J - Qi,J - 

ATi
,J-1 - 

11i'J+l	 (12)

The SIP boundary condition restrictions are illustrated in the appendix.

5Although not specifically pointed out, each time step is split into two
parts. The first one-half time step is differenced implicitly in ^ and
explicitly in r, whereas the second one-half time step is differenced
implicitly in r and explicitly in 0.

i
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The temperatures 
Ti,J-1 

and 
Ti,J+1 

are known from the previous time

step. t.i,iilication of equation (12) to a grid network yields a tridiagonal
matrix of unknown temperatures. The advantages of solving a tridiagonal matrix
rather than a petit adiagonal matrix as generated by equation (11) are evident.

In addition to the previous two methods, the weighted average approach of
Crank and Nicolson (ref. 11) was used in conjunction with the SIP algorithm.

The Crank-Nicolson (CN) modifiest.ion is illustrated in the following
application to equation (9).

T'	 - 	 T'	 - '''I i	 + 7"_iJ 	 i,J+1	 ,J	 " I' 'ApCp	 At	 } = t^ ki
,J 	 2(Ar)

La 
( T,'

+ 1+	 .J - T i	 1.J • 1
ri j	 2 Ar

k i , J	 i +l ' j	 - 2Ti ,J + T i-1 ,J+

(A^ )2
ri

,J

+ k1 , J
	

Cos_ ¢ i ^ J
pti—

^ J - 1 i-1 ,J

ri,J	 sinm
i 	 1^,

2
A@	 f

+	 (1	 -	 Al	 k.i,J
Ti, 

j+l - 2T1,2 + T1.
J - 1

(Ar)

2ki j	 li ,J +1 - Ti,J-11+
r1 ,J	 2 Ar J

kid	 T 1+1
,
 j - 2T 1

,J + Ti -1,J
+

(W2ri
,J

k 
	 J	 cos	 mi 'j

CTi+1,J - Ti-1,J
{

+

2

ri,J	 sin 
mi,j

`	 2 A^	 f

+ q"' (13)
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Equation (13) can be rewritten into the form of equation (11), which is
consistent with the SIP formulation. For the CN method, d is set equal to

0.5 in equation (13). 6 This method is designated simply as SIP/CN.

Because the SIP is an algorithm for solving a certain type of matrix, a
table of geometrically arranged iteration parameters is normally emp'oyed to
speed convergence. Weinstein et al. (ref. 3) recommended a geometrical itera-
tion parameter, defined by the relation

m

1 - Y
m
 - (1 - Y nix 1 t^-i^ m = 0, 1, ... (n - 1)	 (14)
` 	 . J

where Y is the iteration parameter and n is the number of parameters
(normally 4 to 10) in a cycle. The value of the iteration parameter lies
between 0 and 1. For a heat-conduction problem with constant properties
(ref. 2),

1 - min
Ymax.

r2(Ar)2

k^(Ar)2
1 +

k r ( r AO)

2(r A )`

k (r Am)2
1 + r

k^(Ar)2
(15)

For this study, a maximum y value of 0.95 was used. A discu:,sion of the
physical and mathematical significances of the iteration parameter can be
found in references 2 and 3.

COMPARATIVE AUN0ICAL RESULTS

To study the effect of various boundary conditions on the re'etive

I	
accuracy of the solution techniques, the following three examples are

i	 co,. ^dered.7

#	 Steen and Ali (ref. 5) used weighting values of 0.5 and 0.75.

7Any consistent Set of units can be used in these examples. In this
study, absolute numerical values are used instead of dimensionless quantities,
for comparison purposes. Numerical values of k = 0.8, Cp = 0.4, p = 130,
and R - 1 have been used in these examples.

10



Case 1 - A homogeneous, two-dimensional, uniform surface temperature is
specified. The boundary and initial conditions are

TV 0, t) = constant surface temperature

a0 , I. t) = 0

t) = 0, m = 0, n

g 111 = 0

TO, 0, 0) = Ti

This first example is for a sphere with a specified surface
temperature. The surface boundary condition is such that
T(R, 0) = constant. An analytic solution is available (ref. 12).

Case 2 - A homogeneous, two-demension, uniform heat generation is
specified.

T(R, 1, t) = T(r, 1, 0))

= Ti

JT
ar(0, 0, t ) = 0

a	 nt) = 0 ,	 = 0, 

q"' (r, 1, t) - constant

Example 2 considers a sphere with uniform internal heat gener-
ation. Both the initial and surface temperatures are set equal
to zero. An analytic solution for this case can be found in
reference 13.

Case 3 - A homogeneous, two-dimensional, nonuniform surface temperature
is specified.

11



T( R, 0, t) = R2 (3 cos 2 + 1

^0, m, t) - 0

3T	 0, t) = 0, m = 0, n

g 1II _ 0

T(r, ^, 0) = 0

This third ex.-.mple considers a sphere of unit radius R = 1, with
the surface temperature specified as a function of cos m. An
analytic solution for this case is presented in reference 7.

It should be noted that cases 1 and 2 are one-dimensional problems;
however, the numerical computations were performed with the use of a two-
dimensional model. Case 3 is used to represent the accuracy of the numerical
techniques for a two-dimensional problem with a zero temperature along
S = 54 .7356 degrees and m = 125.2644 degrees for all values of r. For
these cases, the results are given in terms of the difference between the
temperature obtained by the exact solution and that obtained form the various
numerical solution techniques. These results are called the temperature
errors, defined as T

exact - T cal.	
As a convenient reference for comparing

the numerical data, table I summarizes the various conditions used to generate
the results given in tables II through IV. For example, numerical time-step
effects can be studied by reference to tables II(a) and II(b). Tables II(a)
through II(c) present a comparison of the numerical resL'.ts for locations
within a sphere with a specified constant surface temperature condition of
r/R = 0 and r/R = 0.5. The temperature history at the geometrical center,
r/R = 0, is of special interest because a discontinuity in equation (3) occurs
at this location. A comparison of the resiLlts at r = 0 indicates that the
SIP with CN modification (SIP/CN) with a geometrically variable y and the
ADIP are the most accurate. A maximum temperature error of 30.631 degrees
(3.96 percent error) occurred at a time unit of 10 after the start of the
transient. Although no m variation in the surface temperature was
specified, where a 0 variation in the temperature was calculated, the error
range in the m direction is shown.

The standard SIP methods (constant and variable y) had the greatest
absolute errors. Also shown in tables II(a) through II(c) are the hollow-
sphere and rectangular approximation solutions used at r = 0. Again, a large
absolute error was found for these two approximate solutions. The effect of
the time step is shown in tables II(a) through II(c): reduction of the time
step to At = 0.1 resulted in a significant reduction in the absolute error
for all methods investigated. The effect of location, r/R = 0.5, on error
again shows the SIP/CN (variable y) and ADIP methods to be the most accurate.

12



The effect of node size on accuracy can be seen by comparing the results
of tables II(b) and II(d) for r = 0, At - 1.0. Fur a reduction of Ar - 0.10
to Ar - 0.05, the error with use of the SIP (y - constant) increased from
30.631 to 92.310 degrees for At - 1.0. A similar increase in the temperat,.Are

error for the SIP/CN (y n variable) and the ADIP was experienced.8

However, for a node reduction of Ar = 0.1 to Ar = 0.05, at a time step
of At = 0.10, the absolute error decreased for both the SIP/CN and the ADIP
methods. The results in tables II(a) through II(e) clearly indicate the effect
of time step and node size oil numerical accuracy for the SIP approach.

Tables III(a) and III(b) present the numerical results
Internal heat generation. Once again, the SIP/CN (variable
methods are the most accurate. For this particular case, a
time step of At = 1.0 to At = 0.1 resulted in a greater
general, for the five methods, except for the SIP/CN (varia
methods.

for a sphere with
y) and the ADTP

reduction in the
accuracy, in
Dle y) and the ADIP

Tables IV(a) through IV(g) present the numerical results for a sphere with
the surface temperature specified as a cos ^ function. Table IV(a) is tine
analytic solution as outlined in reference 7. For case 3, both an absolute
error defined by

Terror Texact - Tcal.

and a relative error defined by

Texact - Tcal.

Texact

were used to evaluate the numerical procedures. Tables IV(b), IV(d), and
IV(f) show the steady-state absolute error for ADIP, SIP/CN (a = variable),
and SIP (a = variable)/hollow-sphere approximation, respectively. Tables
IV(c), IV(e), and IV(g) show the relative error for the respective methods.
As expected, the least error occurs for r values near R = 1 and for 0
values greater than 55 degrees and 125 degrees. As r approaches zero, the
relative error increases quite rapidly. This swne effect is observed as 0
approaches 55.74 degrees and 125.26 degrees, where temperature is zero fur r
values. These errors are a result of the assumption (e.g., eq. 5) used in
numerical procedures and illust rate the sensitivity when the solution is zero.
Similar results are shown by Kee in reference 7, where the restrictions of
equations (8a) and (8b) were not employed.

A similar result was also noted by Barakat and Clark (ref. 14).

13
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CONCLUDING REMARKS

Two basic numerical solutions (the strongly implicit procedure (SIP) and
the alternating-direction implicit procedure (ADIP)) to the diffusion equation
in spherical coordinates hhve been presented. The vali'+i±, r and accuracy of
these solutions are demonstrated by comparing the results obtained therby with
those of anAlytieal solutions. Previous studies have shown that both methods
compare favorably for the diffusion equation in Cartesian coordinates. The
standard SHIP appears to be slightly less efficient than the ADIP for the solid
spherical problem studied in this investigation. This decrease in efficiency

•	 may be a direct result of the requirement that the dependent variable be
calculated for the center of the sphere, where s discontinuity in the governing
equation occurs. However, the Crank-Nicolson modification of the SIP gave
essentially the same results as the ADIP for the cases studied.

In conclusion, it should be mentioned that the SIP algorithm has been 	 -
shown to be far superior to the ADIP for simulation problems involving multi-
phase flow in porous media. It has been possible to obtain converged
solutions to coupled systems of partial differential equations with the SIP
when both the ADIP and successive over-relaxation procedures have failed. It
should also be pointed out that a comparison in which a constant-property
rectangular region was used showed the ADIP to be superior to the SIP, but the
SIP .-to shown more efficient for other rectangular cases involving property
anis..ophy and/or irregular boundary conditions.

Lyndon B. Johnson Space Center
National Aeronautics and Space Administration

Houston, Texas, January 24, 1977
986-15-31-01+-72
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r/R At Ar Titble no. Remarks

Case 1

II(a)0	 011	 0.10

U	 1.0	 .10 11 (b)

.5	 1.0	 .10 II(c)

U	 1.0	 .05 II(d)

0	 .l	 .05 II(e)

'a E; 	 2

0.5 1.0 0.10 III(a)

.5 .l .10 III(b)

arise 3

-- -- - IV(a) Analytical solution

-- 1.0 0.025 IV(b),	 IV(c) ADIP

-- 1.0 .025 IV(d),	 IV(e) :'TP/CN (a = variable)

-- 1.0 .025 IV(f),	 IV(g) "III (a = variable)/
hollow-sphere
approxi mats on



TABLE II.- CASE 1

(a) r/R = 0; At = 0.1; Ar = 0.10

Method 'Temperature error- (Texact - 1' cal. ) a , deg, at

Ft time unit and corresponding. T 	 of -
exr+r • t

5 10 : 0 50

597.8:13 0 773.5860 918.735 0 959.5660

SIP	 ( y - ymfix. )
x.672 2.6o( 1.815 0.054

-j.756 2.53' 1.797

SIP (y = variable) -4.07)A 2.14E 1.637 .049

SIP/CN (y = y	 )Max. -3.006 . `)4o
. 735
.731

.025

SIP/CN (y = variable) -3.099 .428 .685 .023

ADIP -3.037 .42'> .680 .026

SIP ( y = y max. )/
hollow-sphere
approximation 2.97 7.805 1.969 -1.384

SIP ( y = y max. )/
rectangular
approximation 3.862 9.017 3.355 .071

ItT
exact - exact temperature; Tcal. = calculated temperature.

18
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TABLE II.- Continued

(b) r/a - 0; At w 1.0; Ar a 0.10
	 1

Method Temperature error (T 
exact T

 Cale ) f', deg, at

a time unit and corresponding, 
Texact 

of -

5 10 20 50

597.833 0 773.5860 918.735 0 959.566°

`SIP	 (7	 =	 Y	 )
-3.091, 30.631 17.254 0.572

'	 max. -.198 25.886 15.798 .547

:;IF ( Y = variable) -10.293
15.585
15.485

10.308
10.283 '334

SIP/CN (Y = Y	 )max.
•141

4.25')
9.986
4.886

3.914
2.959

.09

.07

SIP/CN (Y = variable) -.821 .304 .460
,017

.455

ADIP 1.095 -1.13 -.306 -.002

SIP (Y = Y	 )/max.
hollow-sphere
approximation 8.019 35.133 17.083 -.875

SIP (Y = Y	 )/maxe
rectangular
approximation 8.52'_1 36.094 18.456 -.145

EL

Texact 
C exact temperature; 

T
cal. = calculated temperature.

19
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TABLE II.- Continued

(c) r/R - 0.5; At a 1.0; Ar s 0.10

Method
a

Temperature error (T exact
- T cal. ) • deg, at

a time unit and corresponding Texact of -

5 10 20 50

'(03.751 0 84o.065 0 933.7 27 0 959.7240

SIP (Y
15.247 18.891 9.563 0.339

Ymax.^ 15.472 18.816 9.486 .338

SIP (y = variable) 10.301 13.576 6.583
6.580

1213

SIP/CN	 (y = y	 )
max.

1.150
1.11"

2.189
2.162

1.298
1.254

.041

31P/CN (y . variable) - .88o .165 .289 .011

ADIP 3.11n -.86'( -.285 -.002

SIP (Y	 Ymax.)/

hollow-sphere
15.247
14.288

18.891
18.309

9.563
9.364

.338

approximation

SIP (Y : Y	 )/
max.

rectangul«r
15.247
14.288

18.891
18.816

9.563
9.364 •338

approximation

aT
exact = exact temperature; Tcal. = calculated temperature.
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TAHLY II.- Continued

(d) r/R w 0; At a 1.0; Ar = 0.05

Method Temperature error (T exact
- T cal. )a0 deg, nt

a time unit and corresponding Texact

5 10 20 "0

`)'97.813 0 773.5860 918.7350 959.5660

SIP (y -	 ) 26,523 92.311- 55.256 2.751
y max. 33.5155 80.253 50.143 2.579

SIP (y - variable)
2.065 32.138 i6.972 .536
4.606 28.219 15.838 .517

SIP/CN (y -	 ) 18.454 54.2%, 25.711 1.251
y max. 30.451 26.880 16.711- .924

SIP/C"I (y	 variable) 2.568 10.233 5.86 .203
6.652 1.126 1.013 .288

ADIP 3.640 -1.951 -.869 -.013

aT
exact = exact temperature; T

cal. n calculated temperature.
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TANLE II.- Concluded

(e) r1H n 0;At-0.1; [!x•0.05

Method	 Temperatu	
a

re error ('r exact. - Tcal.) . dep,. at

a time unit and cerre6ponding ToP -
exact

5	 10	 20	 50

5 y7.fI331 	173.566" 1 918.735 0 1 959.5660

(Y a Y	 )Max.

SIl' (y	 variable)

SIP/CN (y m Y	 )max.

SIP/CN (y - variable)

ADIP

1.460 6.112 2.P84 0.073
1.574'' 6.206 2.900

-1.799 1.888 1.12" .028
-1.798 1.887 1.124

.152 1.384 .723 .017

.417 1.583 .756

-.768 .11^' .168 .003

-.699 .110 .166 .008

a 
exact	 cal.

= exact temperature; IT 	 = ca:culated tonriperat ure.

22
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TABIX III.- CANE 2

(it)	 r/A	 C.5; At =	 1.0;	 Ar =	 0.10

Method 1emperature error (T exact
- T cal. )a'

deg, at a time unit and corresponding

Texact of

10 30 50
2.41849' 3.09110 3.123370

.JP (y - y	 ) 0.12552 0.02150 0.00206
max.

.12407 .02117 .00203

SIP (y = variable) .08681 .01411 00127
.08676

I

SIP/CN (y = y	 )
max'

.02132 .00319 .00026

.02030 .00317

SIP/CN (y = variable)	 .00679	 .00099	 .00008

ADIP	 .00038	 .00010	 0

'IT 
exact= 

exact temperature; Tcal. = calculated temperature.

jt yj4)1 ► UCjRrLf i'Y OF THE

i$RWPNAL PAGE 11 POOR
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TABLE. III.- Concluded

(1))	 r/ i? = r).5; At = -).1 ; ',r = 0.10

Method Temperature error (T	 - T	 )a,
exact	 cal.

, Ieg, at u time unit and corresponding

Texact of	 -

10 30 5r
3.12337`

IE'	 (y	 =	 y	 )
Max. 0.01796 n.0026F 0.00021

.01788

I	 SIP (y	 variable) .01689 .00250 .00020

SIF/CN (y = ymax, ) .00910 .001'4 .00011
.00908

SIP/CN (y = variable) .0088 .00129 .00010

ADIP .00874 .00129 .00011

r'T exact- exact temperature; T ca . = calculated temperature.. 
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Figure l.— Spherical coordinate system.
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SbALe

APPENDIX

BOUNDARY CONDITION RELATIONS WITH USE OF

THE STRONGLY DIPLICIT TECHNIQUE

The transient-heat-conduction equation in spherical coordinates
(eq. (3)) is put in finite-difference form at r = 0 as an illustration of
the SIP boundary condition requirements.

SOLID SPHERE

The SIP boundary restrictions require that

	

Ai'o ; Ei'R = 0 for 0 = 0, v	 (16)

B0
=O . J ; 

D0=n.j = 0 for r = 0, R 	 (17)

As an illustration of these boundary conditions, consider the singularity
located at the geometrical center, r = 0, of the sphere.

By employing the boundary conditions represented by equations (8a) and
(8b), equation ( 3) becomes

PCP 
T at = 3k 0

2T 
+ q' It	 (18)

2r

which can be written in finite-difference form as

k	 (3T'	 - 6T!	 + 3T'	 ) 	 (Tj ' j - T
3.1	 3..1+1	 2	 i.1-1 + q' 1 v = PC 

p  
	
At 

I2J	
(19)(Ar)2 

Employing equation ( 5) yields

Ti s j+1 = Tisi-1	
(20)

Then, equation (19) can be written as

6k..
	 PCP]
	 6k ,,	 PC

- I(Ar) 2 + At T
v

	+ (Ar)2 Ti .j+l 
= -q^	 _ At Ti.i	

(21)

l "1
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A	 ^o,J	 O.J

DO 
J

0 (23e)

r

Comparing equation ( 21) with equation (11) yields

C  'j'! ' j + F'i ,i'i' 
;, ♦1 	 Qi  ,	 (22)

where

S

and

	

6k	 p c

CO 
,J = - (Q- U-'2 + ^	 (23b)

6k
F.	 W	 0 ' 2	 (23c)

0 ' J	 (Ar)?

pC

^o,J At  (23d)

HOLLOW-SPIME APPROXIMATION

This approximation assumes that a small but finite radius (ro ) can be

used to represent the geometrical center. To illustrate this boundary
condition, consider the location

r = ro (ro = 0.01 Ar), m = 0

By employing, the boundary conditions represented by equation (8c) and

IT I	 = 0
2r

r=ro

equation (3) becomes
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t	 ka2T+2k a=TT q+... 
=pC aT

	

art 
ro 

am2
	 p 3t

With the assuunptions that at

m - 0, T
i-1.j = Ti +1.J

r = r 
0 Ti

.j -1 = T1.J+1

equal on (24) can be formulated in terms of equation (11) as

CO.r Ti . j 
+ DO.r 

Ti +1^ j 
+ EO.r 

T i .J +1 = RO.rn	 0	 0	 0

where

C	 o

	

2k	 4k

0

	

O,r	 O,r	 pC

O,ro	
(Ar)2	

(ro 

A ^ 2	 At

4kO,r0
D ^ —
O,ro	(r Q^`2

`kO.r
o

EO,ro 	 (Ar)2

	

- ffk	
_ ^ ^ '

QO,ro	 At TO,ro	 gO'ro

L

(24)

(25a)

(25b) ,11

(26)

(27a)

(2Tb )

(27c)

(27d)

NASA - JSC
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