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A COMPARISON OF IMPLICIT NUMERICAL
METHODS FOR SOLVING THE TRANSIENT
SPHERICAL DIFFUSION EQUATION

By Donald M, Curry
Lyndon B, Johnson Space Center

SUMMARY

Comparative numerical temperature results obtained by using two implicit
finite-difference procedures for the solution of the transient spherical heat-
conduction equation are presented., The strongly implicit procedure is com-
pared to the more standard alternating-direction implicit procedure by using
a two-dimensional solid spherical model, The numerically generated tempera-
ture results obtained by using the strongly implicit procedure and the
alternating-direction implicit procedure tre compared with exact solutions to
assess the relative accuracy and efficiency of the two numerical methods,
Special attention was given to the solution in the regions of singularities
associated with the governing partial differential equation. For the examples
solved, the numerical results obtained by a modified version of the strongly
implicit procedure and by the alternating-direction implicit procedure are
in close agreement with the exact solution.

INTRODUCTION

Numerous authors have discussed the various numerical methods available
for solving the transient diffusion equation. Solutions to the diffusion
equation by means of numerical methods are required for a wide variety of
design/development problems associated with the aerospace, petroleum, and
chemical industries.

Trent and Welty (ref. 1) presented a good summary of numerical methods
for solving transient-heat-conduction problems. However, they did not include
discussion of a recently developed iterative technique (Stone, ref., 2)
called the strongly implicit procedure (SIP)., The SIP was shown to have
several advantages over other implicit numerical techniques in solving large
sets of algebraic equations that arise in the approximate solution of multi-
dimensional partial differential equations. Weinstein et al, (ref. 3) have
used the SIP successfully to solve systems of equations arising in multi-
phase, two-dimensional reservoir flow problems. The SIP has been used by
Curry (ref. 4) in the solution of two-dimensional heat and mass transfer in
porous media. Steen and Ali (ref. 5) compared the SIP algorithm with the



more conventional implicit method in the solution of the nonlinear partial
differential equation for the flow of a real gas in two dimensions. However,
few two-dimensional numerical solutions of the transient-heat-conduction
equation for both spherical and cylindrical coordinates can be found in the
literature, Albasiny (ref, 6) presented an implicit numerical solution for

a cylindrical heat-conduction problem, including the effects of the singularity
at the center of the solid, Kee (ref, 7) developed a finite-difference algo-
rithm for the diffusion equation for a solid sphere.

In this report, the EIP is compared with the more conventional
alternating=-direction implicit procedure (ADIP) (ref. 8) by us/ng a two-
dimensional spherical heat-conduction model, The temperature results obtained
are compared to exact solutions of the spherical heat-conduction equation for
various boundary conditions. Attention is given to the adequacy of the finite=-
difference representation in the neighborhood of the singularities located at
the geometrical center, r = 0, and along the boundaries, ¢ = 0, =,

SYMBOLS

A, B, C, D, E, Q parameters krnown from previous time level and previous

iteration
Cp specific heat
k thermal conductivity
m, n iterative varisbles used in equation (14)
q'" volumetric heat source (sink)
R outer sphere radius
T temperature
o unknown temperature in difference equations
t time
s 4, © spherical space coordinates
X ¥ rectangular space coordinates
; i iteration parameter
p density



Subscripts

i ¢=-direction node location
J r-direction node location
X x-direction

y-direction

Superscript

. indicrtes parameter a. .ext time step or iteration

THEORETICAL MODEL

The transient-heat-conduction equation in spherical coordinates, with the
assumption of constant thermophysical properties, is given as

2 2
3T 1 3°(rT) il ( a'r) = T]
pc — k — + — — .in ’ — b — + q'.' (1)
p ot [; 3r2 ranin (] L L rQsin2¢ 362

where p 1is density; r, ¢, and 6 are spherical space coordinates, defined
in figure 1; T is temperature; t 1is time; k is thermal conductivity; C
is specific heat; and q''' is volumetric heat source. P

If the temperatures field has azimuthal symmetry, then
—= ) (2)

Equation (1) can then be written in two dimensions as

2
aT e T &k ol k 3 aT
[ == ——f — = ¢ —_— i —_— + gt
°C, 3% = 5 gt R o : 2% (r n ¢ 30) q (3)

This two-dimensional unsteady heat conduction in the spherical domain is
bounded by



and

with the boundary and initial conditions as

T(R, ¢, t) = £,(¢, t) ()

where R 1s the outer sphere radius.

In formulating the boundary conditions, it should be noted that equation
(3) is singular at r = 0 and for ¢ = 0, n, The boundary condition
represented by equation (4) permits a sphere with a variable surface tempera-
ture from ¢ =0 to ¢ =n (i.,e., a sphere that is hot at the top and cold
at the bottom)., This variation obviously will result in a temperature
gradient at r = 0, For this analysis, it is assumed that

s===0, r=0 (5)

Equation (5) is strictly true only on ¢ = w/2.1

On the assumption of symmetry along ¢ = 0, m, then

B=0, o=0,n (6)
The initial condition is
T(r' ¢, 0) = fa(rl $) (1)

Equations (3) through (7) are the governing relations used in this
investigation of the SIP and ADIP numerical procedures,

1This'aasumption of aT/ér = 0, r =0, for all ¢ values will be
discussed in a subsequent section of this report.

THE
RODUCIBILITY OF
1‘ R VANAL PAGE 18 POOR



When the sphere is solid rather than hollow, a singularity exists at
r=0, At r =0, the terms

i}iﬂ and T g—° (sin ¢ %)
. r sin ¢

are indeterminate, The<se Lerms can be evaluated by using L'Hospital's rule

3 (2
i g 2K 4 ) 2
ln 222 o 1gp RIS o g 22
)
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Likewise, a singularity exists at ¢ = 0, m in the term

K ) T
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2I"or the limits to exist, it is required that
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Application of L'Hospital's rule to this term yields
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The singularity at r = 0 can also be eliminated by approximating the center

in a Cartesian form'_lation.3 This approach is discuesed by Smith (ref, 10),

A related question concerning a singularity for the cylindrical problca is
discussed by Albasiny (ref, €), A third metiod of eliminating the singularity
at r =0 is to simply assume that a small but finite radius exicsts at the
center; i.e,, hollow-sphere approximation. All three approaches were examined
in this investigation and will be discussed in a subsequent section cf this
report.

3The singularities at r =0 and ¢ = 0, 7 can also be eliminated by
not specifying node points on the boundaries.



IMPLICI DIFFERENCE EQUATION FORMULATION

Equation (3) describes the heat transfer within a spherical region, and a
solution is achieved by approximating the partial derivatives with the use of
suituble finite-differrence expressions involving the ind~pendent and dependent

variables,
imposed is shown in figure 2,

The two-dimensional spherical region with an r, ¢ grid system
An implicit central-difference equation for

each grid point (i, )) within the specified regicn can be written as

L

T
i
C

At

-—h-—-—‘-li ) = k [:rilj+1 =
i)

]
i ¥

(ar)?

Ti.,]-l]

+ ?ki.J (Ti.ﬂ+; ; Ti.d-l)
ri,J r

a “;,a [Ti+1l4_' 2Ti1g = Ti-l.d]
i (a¢)

. k;.ﬁ cos ‘m (Ti"lléi;’.ri-ljj)
ri.J sin ‘i.J

+q'"

(9)

where T' is the unknown temperature. Equation (9) can be written as
k k cos ¢ k k
ety 4 opetad ey o MR 2t At T, 341
r< (a¢) r°sin ¢, ,(2 A¢) » (ar) W )
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Rewriting equation (10) sields



Ay gm0 ¥ By gTiaa,y 0T,y T 0, M,y t BTy < Sy (1)

Equation (11) has five unknown temperatures per grid point (i,J). The
values of A, B, C, D, E, and Q are known on the basis of the previous
time level and/or the previous iteration. A set of equations similar to
equation (11) can be written for ali 1,3 grid points within the region and

on the boundaries.h This matrix of equations can then be inverted to yield

the unknowns, Ti 3 For large systems of equations, this matrix solution can
3

become very time consuming,
NUMERICAL SOLUTION TECHNIQUE

Stone (ref. 2) developed the SIP, an iterative method for solving sets
of algebraic equations that occur for muitidimensional systems. This method
has been used successfully in solving problems involving two-dimensional,
steady-state heat conduction, as well as multidimensional flow in a petroleum
reservoir (ref. 3). The foundation of the SIP calculation method is based on
the approximate factoring of the five-diagonal matrix {five nonzero elements
in each row of metrix) generated by equation (11) into three-diagonal upper
and lower triangular matrices. The detailed mathematical reduction process
required to derive the upper and lower trienguler matrices is presented by
Stone (ref. 2). The equations used in the SIP algorithm to solve for the
unknovn variable Ti 3 together with the boundary condition restrictions, can

»

be found in references 2 and 3.

A second method used in the solution of equation (11) is the ADIP
(Peaceman and Rachford {ref. 8)), which reduces the number of unknowns to
three, as obtained for simple, one-dimensional problems, 3Basically, the ADIP
solves the equations in one direction, with the dependent variable in the
second dimension assumed constant over the time interval. As an example,

consider equation (11) for the first time step, in the ¢ direction.5

BT! + CT! . + DT

11,0 YO,y Y T, T YU,y T AT g T B e (12)

The SIP boundary condition restrictions are illustrated in tine appendix,

5Although not specifically pointed out, each time step i1s split into two
parts. The first one~half time step is differenced implicitly in ¢ and
explicitly in r, whereas the second one-half time step is differenced
implicitly in r and explicitly in ¢.



Ti.J-l and TI.J+1 are known from the previous time

step. /Application of equation (12) to a grid network yields a tridiagonal
matrix of unknown temperatures, The advantages of solving a tridiagonal matrix
rather than a pentadiagonal matrix as generated by equation (11) are evident,

The temperatures

In addition to the previous two methods, the weighted average approach of
Crank and Nicolson (ref. 11) was used in conjunction with the SIP algorithm,

The Crank-Nicolson (CN) modification is illustrated in the following
application to equation (9).

m =5 =
pC (M) =0 |k [r; Aty Tt Nag
P 1. (Ar)2

e (Ti'4,1+1 B Ti'._.j_—l)

ry i 2 Ar
] = ] ]
+ k—ildl 1+1h1 zTi IJ 7 Ti-L._J]
2 2
ry.g (a¢)

e W Rl (Ti'ﬂ,.i = Ti'-l.a)
4 2 Ad
T

ri,J sin ¢1

T -21, 4T
+(1-0) |k, [ bt dad 1'-"1]
IJ (Ar)

G (Ti L | ,,1-1)
r 2 Ar
i,d

g [Tm.a ehec 57 i Ti-l..]]
Q

7 (89)°

B, W st B (Ti-i-l.,i i Ti-l,_j)
r2 sin ¢ e 59
1, 1,

. gt (13)
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Equation (13) can be rewritten into the form of equation (11), which is
consistent with the SIP formulation., For the CN method, © is set equal to

0.5 in equation (13).6 This method is designated simply as SIP/CN,

Because the SIP is an algorithm for solving a certain type of matrix, a
table of geometrically arranged iteration parameters is normally emp’oyed to
speed convergence, Welnstein et al, (ref, 3) recommended a geometrical itera-
tion parameter defined by the relation

1-y = (1 . yw) i as0,1, ... (n=1) (14)

where y 1is the iteration parameter and n is the number of parameters
(normally 4 to 10) in a cycle., The value of the iteration parameter lies
between 0 and 1. For a heat-conduction problem with constant properties
(rer., 2),

2(Ar)2 L 2(r AQ)2

max. k,(ar)? k_(r 84)°
kr(r Ad) ko(Ar)

For this study, & maximum vy wvalue of 0,95 was used. A discussion of the
physical and mathematical significances of the iteration param:ter can be
found in references 2 and 3.

COMPARATIVE NUMERICAL RESULTS

To study the effect of various boundary conditions on the relative

accuracy of the solution techniques, the following three examples are
;

cou Jidered,

ESteen and Ali (ref. 5) used weighting values of 0.5 and 0.75.

TAny consistent get of units can be used in these examples. In this
gtudy, absolute numerical values are used instead of dimensionless quantities,
for comparison purposes, Numerical values of k = 0.8, C_ = 0.4, p = 130,
and R = 1 have been used in these examples, P

10
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Case 1 - A homogeneous, two-dimensional, uniform surface temperature is
specified, The boundary and initial conditions are

T(R, ¢, t) = constant surface temperature

o
3;40, ¢, t)=0

ro‘ot)'O, 0-0.«

wjar
23

Q""" = 0

™r, ¢, 0) = T,

This first example is for a sphere witih a specified surface
temperature., The surface boundary condition is such that
T(R, ¢) = constant, An analytic solution is available (ref. 12).

Case 2 - A homogeneous, two-demension, uniform heat generation is
specified.

(R, ¢, t) = T(r’ ¢, 0))

-Ti

Qo
2l

0, ¢, t)=0

33

Trs &, t) = 0, ¢=0,r
q'''(r, ¢, t) = constant

Example 2 considers a sphere with uniform internal heat gener-
ation. Both the initial and surface temperatures are set equal

to zero. An analytic solution for this cese can be found in
reference 13,

Case 3 = A homogeneous, two-dimensional, nonuniform surface temperature
is specified.

11



(R, ¢, t) = R° (3—92!5&1)

0, ¢, t) =0

e
5=

%(r!°|t).0| ‘-0.1‘

q''' = 0

T™r, ¢, 0) = 0O

This third ex.wple considers a sphere of unit radius R = 1, with
the surface temperature specified as a function of cos ¢. An
analytic solution for this case is presented in reference 7.

It should be noted that cases 1 and 2 are one=dimensional problems;
however, the numerical computations were performed with the use of a two=-
dimensional model. Case 3 is used to represent the accuracy of the numerical
techniques for a two=dimensional prcblem with a zero temperature along
¢ = 54,7356 degrees and ¢ = 125,26L4 degrees for all values of r, For
these cases, the results are given in terms of the difference between the
temperature obtained by the exact solution and that obtained form the various
numerical solution techniques. These results are called the temperature

errors, defined as Texact - Tcal.' As a convenient reference for comparing

the numerical data, table I summarizes the various conditions used to generate
the results given in tables II through IV. For example, numerical time-ste
effects can be studied by reference to tables II(a) and II(b), Tables II(ag
through II(c) present a comparison of the numerical results for locations
within a sphere with a specified constant surface temperature condition of
r/R=0 and r/R = 0.5. The temperature history at the geometrical center,
r/R = 0, is of special interest because a discontinuity in equation (3) occurs
at this location. A comparison of the results at r = 0 indicates that the
EIP with CN modification (SIP/CN) with a geometrically variable y and the
ADIP are the most accurate. A maximum temperature error of 30,631 degrees
(3.96 percent error) occurred at a time unit of 10 after the start of the
transient, Although no ¢ variation in the surface temperature was
specified, where a ¢ variation in the temperature was calculated, the error
range in the ¢ direction is shown.

The standard SIP methods (constant and variable Yy) had the greatest
absolute errors. Also shown in tables II(a) through II(c) are the hollow-
sphere and rectangular approximation solutions used at r = 0, Again, a large
absolute error was found for these two approximate solutions. The effect of
the time step is shown in tables II(a) through II(c): reduction of the time
step to At = 0.1 resulted in a significant reduction in the absolute error
for all methods investigated. The effect of location, r/R = 0.5, on error
again shows the SIF/CN (variable vy) and ADIP methods to be the most accurate.



l

The effect of node size on accuracy can be seen by comparing the results
of tables II(b) and II(d) for r = 0, At = 1,0, For a reduction of Ar = 0,10
toc Ar = 0,05, the error with use of the 8IP (y = constant) increased from
30,631 to 92,310 degrees for At = 1,0, A similar increase in the temperature

error for the SIP/CN (y = vaiiable) and the ADIP was experienced.a

However, for a node reduction of Ar = 0,1 to Ar = 0,05, at a time step
of At = 0,10, the absolute error decreased for both the SIP/CN and the ADIP
methods, The results in tables II(a) through II(e) clearly indicate the effect
of time step and node size on numerical accuracy for the SIP approach,

Tables I1I(a) and ITI(b) present the numerical results for a sphere with
internal heat generation. Once again, the SIP/CN (variable y) and the ADIP
methods are the most accurate., For this particular case, a reduction in the
time step of At = 1.0 to At = 0.1 resulted in a greater accuracy, in
general, for the five methods, except for the SIP/CN (variable y) and the ADIP
methods,

Tables IV(a) through IV(g) present the numerical results for a sphere with
the surface temperature specified as a cos ¢ function, Table IV(a) is the
analytic solution as outlined in reference 7. For case 3, both an absolute
error defined by

Terror * Texact = Teal,

and a relative error defined by

T - T
exact cal,.
T = =l
rel =

exact

were used to evaluate the numerical procedures, Tables IV(b), IV(d), and
IV(f) show the steady-state absolute error for ADIP, SIP/CN (a = variable),
and SIP (a = variable)/hollow-sphere approximation, respectively. Tables
IV(e), IV(e), and IV(g) show the relative error for the respective methods.
As expected, the least error occurs for r values near R =1 and for ¢
values greater than 55 degrees and 125 degrees, As r approaches zero, the
relative error increases quite rapidly. This same effect is observed as ¢
approaches 55.TW degrees and 125.26 degrees, where temperature is zero for r
values. These errors are a result of the assumption (e.g., eq. 5) used in
numerical procedures and illust~ate the sensitivity when the solution is zero.
Similar results are shown by Kee in reference 7, where the restrictions of
equations (Ba) and (8b) were not employed.

A similar result was also noted by Barakat and Clark (ref, 1L),

13



CONCLUDING REMARKS

Two basic numerical solutions (the strongly implicit procedure (SIP) and
the alternating-direction implicit procedure (ADIP)) to the diffusion equation
in spherical coordinates have been presented. The validity and accuracy of
these solutions are demonstrated by comparing the results obtained therby with
those of analytical solutions. Previous studies have shown that both methods
compare favorably for the diffusion equation in Cartesian coordinates, The
standard SIP appears to be slightly less efficient than the ADIP for the solid
spherical problem studied in this investigation. This decrease in efficiency
may be a direct result of the requirement that the dependent variable be
calculated for the center of the sphere, where a discontinuity in the governing
equation occurs, However, the Crank-Nicolson modification of the SIP gave
essentially the same results as the ADIF for the cases studied.

In conclusion, it should be mentioned that the SIP algorithm has been
shown to be far superior to the ADIP for simulation problems involving multi-
phase flow in porous media. It has been possible to obtain converged
solutions to coupled systems of partial differential equations with the SIP
when both the ADIP and successive over-relaxation procedures have failed, It
should also be pointed out that a comparison in which a constant-property
rectangular region was used showed the ADIP to be superior to the SIP, but the
SIF +as shown more efficient for other rectangular cases involving property
anisc. ophy and/or irregular boundary conditions.

Lyndon B. Johnson Space Center
National Aerorautics and Space Administration
Houston, Texas, January 24, 1977
986-15=31=0L=T2
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TABLE T.- SUMMARY OF CONDIT1ONS STUDIED

r/R At Ar Table no. Remarks
Case 1
0 0.1 0.10 I1(a)
0 1.0 .10 I1(b)
5 1.0 .10 I1(e)
0 1.0 .05 11(d)
0 | .05 11(e)
Case 2
0.5 1.0 0.10 111(a)
o5 | .10 I1I(Db)
Case 3
e o - IV(a) Analytical solution
- 1.0 0.025 (b)), Iv(e) ADIP
- 1.0 .025 Iv(d), 1v(e) SIP/CN (a = variable)
ey 1.0 . 025 w(r), vig) SIP (a = variable)/
hollow-sphere
approximation




TABLE 1I.- CASE 1

(a) r/R=0; At = 0,1; Ar = 0,10

. ", ‘
Method lemperature error (Ten,ct - Tcnl.) , deg, at
a time unit and corresponding 'l‘e“ct of =
5 10 20 50
597.833° | 773.586° | 918.735° | 959.566°

s = -3.672 2.606 1.815
BIP (¥ = Ypuy,’ -3.756 2,533 1.797 9,05
SIP (y = variable) -l 0Tk 2.146 1.637 L0L9
B 7 = -2.978 563 « T35
SIP/CN (Y Ym&x.) -5.006 .5'40 L7131 025
SIP/CN (y = variable) -3.099 428 .685 .023
ADIP -5-037 .h25 1680 .026
SIP (y = vm_)/

hollow=-sphere

approximation 2,973 7.805 1.969 -1,36L
BIP (y = Ymax.)/

rectangular

approximation 3.862 9.017 3.355 071

& = exact temperature; T = calculated temperature,

exact cal,




TABLE II,- Continued

(b) r/R = 0; At = 1,0; Ar = 0,10
a
Met hod Temperature error (Texact - Tcal.) , deg, at
a time unit and corresponding Texaet of =
5 10 20 50
597.833° | 773.586° | 918,735° | 959.566°
-3.094 30,631 17.25k 0.572
BIP (Y * Yyuy,! -.198 | 25.886 | 15.798 J5hT
15.585 10,309
SIP (y = variable) -10,293 15.485 10.283 .33k
% o1kl 9.986 3.914 .09
BIP/CH (v = vo,,, ) 4,255 L.886 2,959 .07
SIP/CN (y = variable) -.821 « 30k JU60 017
455 ’
ADIP 1!095 "'1.13 --306 —.002
SIP (y = ymx.)/
hollow=sphere
approximation 8.019 35.133 17.083 -.875
BIP (y» v )/
rectangular
approximation 8.525 36,094 18,456 =145

a
Texact

= exact temperature; T

cal,

= calculated temperature,
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TABLE 1l.- Continued

(¢) r/R=0.5; 4t = 1,0; Ar = 0,10

Method Temperature error (T' - T i

xact cal,” ? deg, ot

a time unit and corresponding Tex.ct of =

5 10 20 50

703.751° | 8Lk0,065° | 933.727° | 959.724°

15.247 18.891 9,563 0.339
SIP (v = Yo, ) 15,472 18,816 9.L86 .338
SIP (y = varieble) 10.301 13,576 g:ggg ,213
Y ® Ymax, 1,114 2,162 1.259 .
SIP/CN (y = variable) -.880 . 165 .289 011
A.DIP 3.118 -.867 -.285 -0002
BIP (y = y )/
max
Y 15,247 18,891 9.563
hollow=-sphere .338
spprexisetica 14,288 18,309 9.36kL
SIP (y = y )/
max
’ 15,247 18,891 9.563
et o 14,288 | 18.816 | 9.36k o339
approximation
a
Texact = exact temperature; Tcal. = calculated temperature,

20




TABLE II.,- Continued

(d) r/R = 0; At = 1,0; Ar = 0,05
a
Method Temperature error (T.‘ 2ot * Tc nl.) , deg, at
a time unit and corresponding 'r“lct -
5 10 20 50
597.833° | 773.586° | 918,735° | 959.566°
- 28,523 92,310 55,256 2,751
BIP (¥ = Ypax,! 33.555 | B80.253 | 50.1i3 2,579
" 2.065 32,138 16,972 +536
8IP (y = variable) 4,606 | 28.219 | 15.838 517
= 18,454 5k, 256 25,711 1,251
BIP/CN (v = Yooy, ! 30.k51 | 26.880 | 16.71k .92k
. B o. . GA .
BIF/CH Y & varialie) cose | ‘T | o3 288
ADIP 3.6L0 =1,951 -.869 -,013
N = exact temperature; Tcnl. = calculated temperature,

21



TABLE Il.,- Concluded

(e) r/R=0; At = 0,1; Ar = 0,05

Method Temperature error (Taxact - Tcnl.)a' deg, at
& time unit and corresponding Texact of =
b 10 20 50
597.833° | 773.586° | 918,735° | 959,566°
BIP (y = b ) 1.k60 6,112 2.884 0.073
. 1.572 6.206 2,900
BIP (y = variable) -1.799 1,888 1,123 .028
SIP/CN (y = y ) o152 1.384 723 017
o 17 1.583 756
SIP/CN (y = variable) -, 768 112 .168 .003
ADTP -.699 110 .166 .008
S = exact temperature; 7T = calculated temperature,

exact cal




TABLE III.- CASE 2

(a) r/R = 0,5; At = 1,0; Ar = 0.10

A
Method Temperature error (Tex.ct - Tca.l.) ’
deg, at a time unit and corresponding
T of
exact
10 30 50
2.L418L9"° 3.0911° 3.12337°
SIP (y = = ) 0.12552 0.02150 0.00206
. .12L07 02117 ,00203
SIP (y = variable) .08681 01411 00127
.0B6T6
SIP/CN (y = y Fem ) 02132 .00319 00026
M .02030 .00317
SIP/CN (y = variable) .00679 .00099 .00008
ADIP .00038 .00010 0
pra— = exact temperature; Tca.l. = calculated temperature.

REPRODUCIBILITY OF THE
SRIGTVAL PAGE I8 POOR

[




TABLE III.- Concluded

(b) r/R = 0.5; At = 0.1; Ar = 0,10
" a
Method lemperature error (Texnct Tcal.) 5
deg, at a time unit and corresponding
5 of =
exact
10 30 50
2.418409° 3.0911° 3.12337°
SIP (y = 25 0.01796 0.00266 0.00021
- .01788
IP (v = variable) .01689 .00250 .00020
SIP/CN (y = vy ) .00910 0013k .00011
g .00908
SIP/CN (y = veriable) .0088 .00129 00010
ADIP L0087k .00129 .00011
“p = exact temperature; T = calculated temperature.
exact cal,




TABLE IV.- CASE 3

(a) Analytic solution
Angular Temperature (T), deg, at a radial position (r) of -
position
(¢), deg 1.00 0.75 Q.50 Q.25 0.1 0.10 0.05
0 1.0000 0.56250 0.250000 0.062500 0.02250 0.01000 0.002500
18.46150 .8L9s582 477890 .212395 .0530989 0191156 .008Lk9s582 .00212396
36.9231 .458663 .257998 114666 .028666L .0103199 .00L58663 .0011L66€
55.3846 .0159537 | -.00897393 | -.00398841 | -.000997103 | -.000358957 | -.0001595237 .00003988L1
73.8462 .383892 -.215940 -.0959731 -.0239933 -. 00863758 -.0038389 -.0009597T31
83.0769 178206 -.268991 -.119552 -.0298879 -.0107596 -.00LT7820€ -.00119552
96.9231 178206 -.268991 -.119552 -.0298879 -.0107596 -.00LTB206€ -,0011955°
106.,1540 .283893 -.2159L40 -.0959731 -.0239933 -.00863758 -.00383803 -.000959732
12k .615 .0159538 | -.0089740L | -.00398846 | -.000997115 | -.000358961 | -.000139538 | -.0000398846
143,077 158663 .257998 .114666 .028666L .0103199 .00L58663 .0011L666
161.538 .849582 k77890 .212395 .0530989 .0191156 .008k9582 .00212395
180.00 .0000 .56250 .250000 .062500 .02250 .01000 .002500

G2
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TABLE IV.- Continued

(b) ADIP - absolute error at steady-state

exact

cal

! ‘ngular Temperature sbsolute error (Texact ik S )%, deg, at a radial position (r) of -
position .
(¢), deg 1.00 0.75 0.50 0.25 0.15 0.10 0.050
0 0 -0.000708 -0.00086k -0.0006358 ~0.0004991 -0.000L 358 =0 .00038L90
18.L46150 0 -.000632 -.000779 -.0005919 -.0004773 -.000L2L02 -.00038105
36.9231 0 -.000L1L -.0005k% -.0004T749 -.000Lk196 -.00030289 -.00037093
55.3846 0 -.00014885| -.00026036| -.000332609 | =-.0003Lk9LSL | -.00035506 -.000358630
73.8L62 0 .000057 -.0000398 -.0002223 -.00029508 -.00032572 -.000349093
83.0769 0 .00011 .000016 -.000194 -.0002811 -.0003182 -.0003L6652
96.9231 0 .00011 .000016 -.00019k% -.0002811 -.0003182 -.0003Lk6652
106.1540 0 .000057 -.0000398 -.0002223 -.00029507 -.00032573 -.00034900k
124 .6150 0 -.0001488 -.00026034 | -.000332612 | ~-.0003k9LS5E | -.00035507 -.000358633
143.077 0 -.000k1L -.00054% -.0004TL9 -.000L196 -.00039290 -.00037093
161.538 0 -.000632 -.0007T79 -.0005919 -.000LTT3 -.00042Lk03 -.00038107
180.00 0 -.000708 -.000864 -.0005359 -.000Lk991 -.000L358 -.00038k91
S exact temperature; = calculated temperature.




L2

TABLE IV.- Continued

(c) ADIP - relative error at steady-state
Angular Temperature relative error ((Texact = T*al )/Texact)a at a radial position (r) of -
position -
(¢), deg 1.00 0.75 0.50 0.25 0.15 0.10 0.050
0 0 -0.0012587 | -0.003456 -0.010173 -0.022182 -0.0k 3580 -0.15396
18 .46150 0 -.0013225 -.003667 -.0111L7 -.02k969 -.049910 -.179%10
36.9231 0 -.0016047 -.004TELS -.016568 -.0L0659 -.085660 -.32349
55.3846 0 .016587 .065279 .33358 97353 2.2256 8.9918
73.8462 0 -.00026396 .000Lk1470 .0092651 .03k162 .0BLBLT . 36374
83.0769 0 -.0004089L4 | -.00013383 .0064909 .026126 .066540 .28996
96.9231 0 -.00040894 | -.00013383 .0064909 .026126 .066540 .28996
106.1540 0 -.00026396 .00041470 .0092651 034161 L08LBLT . 3637
124.6150 0 .016581 .065273 .33357 97352 2.2256 8.9918
143.077 0 -.0016047 -.004ThLLsS -.016568 -.040659 -.085662 -.32349
161.538 0 -.0013225 -.0036€TT -.0111k7 -.02k969 -.049910 -.17942
180.00 0 -.0012587 -.003456 -.010174 -.022182 -.043580 -.15396
A = exact temperature; Tc e = calculated temperature.




TABLE

IV.- Continued

(d) SIP/CN (a = variable) - absolute error at steady-state
Angul?r Temperature asbsolute error (Texact - Tcal.)a‘ deg, at 2 radial position (r) of -
position
(¢), deg 1.00 0.75 0.50 0.25 0.15 0.10 0.050
0 0 -0 .000716 -0.000865 | -0.0006096 -0 .000LL65 -0 .0003796 -0 .0003305k4
18.46150 0 -.000640 -.0007T79 -.0005912 ~.0004793 -.00042905 -.00036815
36.9231 0 -.000418 -.000544 -.000LTLT -.0004187 -.00039283 -.00037706
55.3846 0 -.00014826 | -.00026011] -.000332297| -.000349282| -.000353759 | -.00036516
73.8462 0 .00006 -.0000395 -.000222 -.00029488 -.00032500 -.000351Lk08
83.0769 0 .000115 .000017 -.0001937 -.0002808 -.00031788 -.0003L6T7
96.9231 0 .100115 .000017 -.0001937 -.0002808 -.00031826 -.0003L36T%
106.1540 0 .00006 -.000C 395 -.000222 -.00029LT2 -.0003260 -.0003kLLT
124 .615 0 -.00014832 | -.0002602 -.000332423| -.00034928L | -.00035566 -.000351763€
143.077 0 -.000L18 -.00054k -.000LTLT -.0004198 -.000392k5 -.00036L5
161.538 0 -.000639 -.0007T79 -.0005922 -.000LkT752 -.000Lk1672 -.00039205
180.00 0 -.000716 -.000865 -.0006958 -.0006199 -.00056Tk -.00051088
A = exact temperature; Tcal. = calculated temperature.




(e)

TABLE IV.- Continued

SIP/CN (a = variable) - relative error at steady-state

Angular Temperature relative error ((Texact -0 )/Texact)a at a radial position (r) of -
position 5
(¢), deg 1.00 0.75 0.50 0.25 0.15 0.10 0.050
0 0 -0.0012729 |-0.0034k6 -0.0097536 -0.0198LL -0.03796 -0.132216
18.46150 0 -.0013392 -.003667T -.01113% -.0250Th -.05050 -.17333
36.9231 0 -.0016202 ~.00LTLL2 -.016559 -.0k0572 -.0856L7 -.32883
55.38L46 0 .016521 .065216 .33326 .97305 2.217k 9.15553
T73.8462 0 -.00027785 | -.00041157 .0092526 .03k139 .08LE82 .36615
83.0769 0 .000Lk2752 | -.0001k22 .00€4809 .0260098 .066LT3 .28999
96.9231 0 .000k2752 | -.0001L22 .006L4809 .026008 .066552 28747
106 .1540 0 -.00027785 | -.00041157 .0092526 03121 .08k919 .35802
124 .615 0 .016528 .065236 .33338 L9730k 2.2293 8.81953
143,077 0 -.0016202 -.00LkTLYL2 -.016559 -.0L06T9 -.08556L -.3181k
161.538 0 -.0013371 -.003667T -.011153 -.02L859 -.049050 -.18459
180.00 0 -.0012729 -.00346 -.011133 -.027551 -.056Th -.204352
Al 3 = exact temperature; Tcal. = calculated temperature.




0t

(f)

TABLE IV.- Continued

SIP/hollow-sphere approximation (a

varisble) - absolute error at steady-state

Angular Temperature absolute error (T . )®, deg, at a radial position (r) of -
position — -
(¢), deg 1.00 0.75 0.50 0.25 0.15 0.10 0.050

0 0 -0.000706 -0.0C0862 .0006318 -0.0004942 -0.000L307 -0.00037945
18 .46150 0 -.000631 -.0007TT .0005878 -.0004T2h -.000L1C86 -.00037561
36.9231 0 -.000L413 -.000542 .0004707 -.000L1LT -.000387TL -.00036554
55.38L6 0 -.00014737 | -.00025767 .00032823 -.0003k4577 | -.00034992k | -.0003532921
73.8462 0 .000058 -.0000369 -.0002179 -.00029017 -.0003206 -.00034 379k
83.0769 0 .000112 -.000019 .0001896 -.0002762 -.00031307 -.0003k1 364
96.9231 0 .000112 -.000019 .0001896 -.0002762 -.00031307 -.0003k1 367
106.1540 0 .000058 -.0000369 .0002179 -.00029017 -.0003206 -.000343803
124 .6150 0 -.00014733 | -.00025766 .000328325 | -.000344587 ! -.000349936 | -.0003533106
143,077 0 -.000413 -.000542 .000L 70T -.00041L8 -.00038777 -.020036557
161.538 0 -.000631 -.0007 7T .0005878 -.000L4T25 -.0004k189 -.0003756T
180.00 0 -.000706 -.000862 .0006318 -.00049L3 -.0004 307 -.0003795

S exact temperature; Tcal. = calculated temperature.




TABLE IV.- Concluded

(g) SIP/hollow-sphere approximation (a = variable) - relative error at steady-state

Tt

Angular Temperature relative error ((Texact -2 )/Texact)aat a radial position (r) of =
position 5
(¢), deg 1.00 0.75 0.50 0.25 0.15 0.10 0.050
0 0 -0.0012551 | -0.003kL8 -0.010109 -0.02196k -0 .04307 -0.15178
18.6L15 0 -.001320L -.0036583 -.011070 -.024713 -.049302 -.17684
36.9231 0 -.0016008 -.00LkT268 -.016420 -.0k0184 -.084537 -.31879
55.3846 0 .016L422 .06LE0S .32918 .9599k 2.1934 8.8580
73.8462 0 -.00026859 .00038LL8 .0090817 .03959k .083513 .35822
83.0769 0 -.00041637 .00015893 .0063k37 .025670 .065468 .28554
96.9231 0 -.00041637 .00015893 .0063k437 .025670 .065L68 .28554
106.1540 0 -.00026859 .00038L48 .0090817 .03359% .083513 .35823
124 .6150 0 .016417 .06L601 .32927 .95996 2.193k 8.8583
143.077 o} -.0016008 -.0047268 -.016L20 -.0k010L -.08L5LL -.31881
161.538 0 -.001320L -.0036583 -.011070 -.02L718 -.0k9302 -.17687
180.00 0 -.0012551 -.0034L8 -.010109 -.021969 -.0L307 -.15178
= exact temperature; T = calculated temperature.

exact cal.
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APPENDIX

BOUNDARY CONDITION RELATIONS WITH USE OF

THE STRONGLY IMPLICIT TECHNIQUE

The transient-heat-conduction equation in spherical coordinates
(eqs (3)) is put in finite-difference form at r = ) as an illustration of
the SIP boundary condition requirements, :

SOLID SPHERE

The SIP boundary restrictions require that

A, 3 E,

i,0° 5i,R =0 for ¢ =0, w (16}

B¢=O,J; D¢=w,3 =0 for r=0,R (17)

As an illustration of these boundary conditions, consider the singularity
located at the geometrical center, r = 0, of the sphere.

By employing the boundary conditions represented by equations (8a) and
(8b), equation (3) becomes

2
pCp-g%-=3k-§~g—+q"‘ (18)
ar

which can be written in finite-difference form as

I T W WY DO L L)
r
BEuploying equation (5) yields
TR R (20)
Then, equation (19) can be written as
6k, pC bk c
wj—tad ¢ B + —tad mpr =_q'll_,f_P.T (1)
a2 T T T 2 1 &% U1,

3k




Comparing equation (21) with equation (11) yields

C T BT " Y, (22)
where
0,3 * Po,
' %
= 0 (23&)
and
6k pC
C. o o|—tade —1] (2®)
% [(m2 ca
éx
0
E = (23(}')
OOJ (AI‘)2
~p iad
%, "% 1,5 "%, (234)

HOLLOW=SPHERE APPROXIMATION

This approximation assumes that a small but finite radius (ro) can be

used to represent the geometrical center, To illustrate this boundary
condition, consider the location

r= ro(ro = 0.01 Ar). 4=0
By employing the boundary conditions represented by equation (8¢) and

T
ar

b o o
o

equation (3) becomes



I3

tﬁ.fl

+ql.' .pc E
ara o ¢ R

n

With the assumptions that at

¢=0, Ti-l.d = Ti#l.d

rsr
o'

'
Tl =1 . T;' Wl

equat on (24) can be formulated in terms of equation (11) as

C - 41 +D T + E 4
O.ro % O.ro i+l,) O.rOTi.J+1 " qo,ro
where
2k Lk
: . O.ro O.ro_ ocn
4%, (ar)? (ro M)a it
hko,r
D0 r il °2
]
o (ro Af)
zko,ro
E = —
0,7, (Ar)2
oy
- - alth
,r =% To,r qo.ro
36

(24)

(25a)

(25b)

(26)

(27a)

(27v)

(27¢)

(274)
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