General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
JSC-11628

NASA TeCHNICAL MEMORANDUM

NASA TM X-58194 January 1977

A COMPARISON OF IMPLICIT NUMERICAL

ME THODS FOR SOLVING THE TRANSIENT

HERICAL DIFFUSION EQUATION

```
(NASA-TM-X-5E194) A CCBPABISCN CF INELICIT
NUMEBLCAI METECES FCB SOLVING THE TEANSIENT
SPHEFICAL DIFFUSICN ECUAIICN (NASA) 39 p
HC AO3/ME AO1 CSCI 2OL
```

N77-17400

Unclas G3/34 16:63

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TEXAS 77058

[^0]A COMPARISON OF IMPLICIT NUMERICALME THODS FOR SOLVING THE TRANSIENTSPHERICAL DIFFUSION EQUATION
Donald M. CurryLyndon B. Johnson Space CenterHouston, Texas 77058

CONTENTS

Section Page
SUMMARY 1
INTEODUCTION 1
SYMBOLS 2
THEORETICAL MODEL 3
IMPLICIT DIFFERENCE EQUATION FORMULATION 7
NUMERICAL SOLUTION TECHNIQUE 8
COMPARATIVE NUMERICAL RESULTS 10
CONCLUDING REMARKS 14
REFERENCES 15
APPENDIX - BOUNDARY CONDITION RELATIONS WITH USE OF THE STRONGLY IMPLICIT TECHNIQUE 34

TABLES

Table Page
I SUMMARY OF CONDITIONS STUDIED 17
II CASE 1 ! 18
III CASE 2 23
IV CASE 3 25FIGURES
Figure Page
1 Spherical coordinate system 32
2 Finite-difference grid network 33

A COMPARISON OF IMPLICIT NUMERICAL

METHODS FOR SOLVING THE TRANSIENT
SPHERICAL DIFFUSION EQUATION
By Donald M. Curry
Lyndon B. Johnson Space Center

SUMMARY

Comparative numerical temperature results obtained by using two implicit finite-difference procedures for the solution of the transient spherical heatconduction equation are presented. The strongly implicit procedure is compared to the more standard alternating-direction implicit procedure by using a two-dimensional solid spherical model. The numerically generated temperature results obtained by using the strongly implicit procedure and the alternating-direction implicit procedure ere compared with exact solutions to assess the relative accuracy and efficiency of the two numerical methods. Special attention was given to the solution in the regions of singularities associated with the governing partial differential equation. For the examples solved, the numerical results obtained by a modified version of the strongly implicit procedure and by the alternating-direction implicit procedure are in close agreement with the exact solution.

INTREDUCTION

Numerous authors have discussed the various numerical methods available for solving the transient diffusion equation. Solutions to the diffusion equation by means of numerical methods are required for a wide variety of design/development problems associated with the aerospace, petroleum, and chemical industries.

Trent and Welty (ref. 1) presented a good summary of numerical methods for solving transient-heat-conduction problems. However, they did not include discussion of a recently developed iterative technique (Stone, ref. 2) called the strongly implicit procedure (SIP). The SIP was shown to have several advantages over other implicit numerical techniques in solving large sets of algebraic equations that arise in the approximate solution of multidimensional partial differential equations. Weinstein et al. (ref. 3) have used the SIP successfully to solve systems of equations arising in multiphase, two-dimensional reservoir flow problems. The SIP has been used by Curry (ref. 4) in the solution of two-dimensional heat and mass transfer in porous media. Steen and Ali (ref. 5) compared the SIP algorithm with the
more conventional implicit method in the solution of the nonlinear partial differential equation for the flow of a real gas in two dimensions. However, few two-dimensional numerical solutions of the transient-heat-conduction equation for both spherical and cylindrical coordinates can be found in the literature. Albasiny (ref. 6) presented an implicit numerical solution for a cylindrical heat-conduction problem, including the effects of the singularity at the center of the solid. Kee (ref. 7) developed a finite-difference algorithm for the diffusion equation for a solid sphere.

In this report, the SIP is compared with the more conventional alternating-direction implicit procedure (ADIP) (ref. 8) by using a twodimensional spherical heat-conduction model. The temperature results obtainea are compared to exact solutions of the spherical heat-conduction equation for various boundary conditions. Attention is given to the adequacy of the finitedifference representation in the neighborhood of the singularities located at the geometrical center, $r=0$, and along the boundaries, $\phi=0, \pi$.

SYMBOLS

A, B, C, D, E, Q parameters known from previous time level and previous iteration
${ }^{C}$ p specific heat
k thermal conductivity
m, n
q''' volumetric heat source (sink)
$R \quad$ outer sphere radius
T temperature
T'
t time
$r, \phi, \theta \quad$ spherical space coordinates
x, y rectangular space coordinates
$\gamma \quad$ iteration parameter
ρ
density

Subscripts

1	ϕ-direction node location
d	r-direction node location
x	x-direction
y	y-direction

Superscript
indicates parameter ai ext time step or iteration

THEORETICAL MODEL

The transient-heat-conduction equation in spherical coordinates, with the assumption of constant thermophysical properties, is given as

$$
\begin{equation*}
\rho C_{p} \frac{\partial T}{\partial t}=k\left[\frac{1}{r} \frac{\partial^{2}(r T)}{\partial r^{2}}+\frac{1}{r^{2} \sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial T}{\partial \phi}\right)+\frac{1}{r^{2} \sin ^{2} \phi} \frac{\partial^{2} T}{\partial \theta^{2}}\right]+q^{\prime \prime \prime} \tag{1}
\end{equation*}
$$

where ρ is density; r, ϕ, and θ are spherical space coordinates, defined in figure 1; T is temperature; t is time; k is thermal conductivity; C_{p} is specific heat; and q''' is volumetric heat source.

If the temperatura field has azimuthal symmetry, then

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial \theta^{2}}=0 \tag{2}
\end{equation*}
$$

Equation (1) can then be written in two dimensions as

$$
\begin{equation*}
\rho C_{p} \frac{\partial T}{\partial t}=k \frac{\partial^{2} T}{\partial r^{2}}+\frac{2 k}{r} \frac{\partial T}{\partial r}+\frac{k}{r^{2} \sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial T}{\partial \phi}\right)+q^{\prime \prime \prime} \tag{3}
\end{equation*}
$$

This two-dimensional unsteady heat conduction in the spherical domain is bounded by

$$
0 \leq r \leq R
$$

and

$$
0 \leq \phi \leq \pi
$$

with the boundary and initial conditions as

$$
\begin{equation*}
T(R, \phi, t)=f_{1}(\phi, t) \tag{4}
\end{equation*}
$$

where R is the outer sphere radius.
In formulating the boundary conditions, it should be noted that equation (3) is singular at $r=0$ and for $\phi=0$, π. The boundary condition represented by equation (4) permits a sphere with a variable surface temperature from $\phi=0$ to $\phi=\pi$ (i.e., a sphere that is hot at the top and cold at the bottom). This variation obviously will result in a temperature gradient at $r=0$. For this analysis, it is assumed that

$$
\begin{equation*}
\frac{\partial T}{\partial r}=0, \quad r=0 \tag{5}
\end{equation*}
$$

Equation (5) is strictly true only on $\phi=\pi / 2 .^{1}$
On the assumption of symmetry along $\phi=0, \pi$, then

$$
\begin{equation*}
\frac{\partial T}{\partial \phi}=0, \quad \phi=0, \pi \tag{6}
\end{equation*}
$$

The initial condition is

$$
\begin{equation*}
T(r, \phi, 0)=f_{2}(r, \phi) \tag{7}
\end{equation*}
$$

Equations (3) through (7) are the governing relations used in this investigation of the SIP and ADIP numerical procedures.

[^1]```
4

When the sphere is solid rather than hollow, a singularity exists at \(r=0\). At \(r=0\), the terms
\[
\frac{2 k}{r} \frac{\partial T}{\partial r} \text { and } \frac{k}{r^{2} \sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial T}{\partial \phi}\right)
\]
are indeterminate. These terms can be evaluated by using L'Hospital's rule (ref. 9), \({ }^{\text {2 }}\)
\[
\lim _{r \rightarrow 0} \frac{2 k}{r} \frac{\partial T}{\partial r}=\lim _{r \rightarrow 0} \frac{2 k \frac{\partial}{\partial r}\left(\frac{\partial T}{\partial r}\right)}{\frac{\partial}{\partial r}(r)}=2 k \frac{\partial^{2} T}{\partial r^{2}}
\]
and
\[
\begin{aligned}
\lim _{r \rightarrow 0} \frac{k}{r^{2} \sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial T}{\partial \phi}\right) & =\lim _{r \rightarrow 0} \frac{\frac{\partial}{\partial r}\left[\frac{k}{\sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial T}{\partial \phi}\right)\right]}{2 r} \\
& =\lim _{r \rightarrow 0} \frac{\frac{a^{2}}{\partial r^{2}}\left\{\frac{k}{\sin \phi}\left[\frac{\partial}{\partial \theta}\left(\sin \phi \frac{\partial T}{\partial \phi}\right)\right]\right\}}{2}=0
\end{aligned}
\]

Likewise, a singularity exists at \(\phi=0, \pi\) in the term
\[
\frac{k}{r^{2} \sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial T}{\partial \phi}\right)
\]
\({ }^{2}\) For the limits to exist, it is required that
\[
\begin{gathered}
\frac{1}{\sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial T}{\partial \phi}\right)=0, \quad r=0 \\
\frac{\partial}{\partial r}\left[\frac{1}{\sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial T}{\partial \phi}\right)\right]=0, \quad r=0
\end{gathered}
\]

Application of L'Hospital's rule to this term yields
\[
\begin{aligned}
\lim _{\phi \rightarrow 0, \pi}\left[\frac{k}{r^{2} \sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial T}{\partial \phi}\right)\right] & =\lim _{\substack{\phi \rightarrow 0 \\
\phi \rightarrow \pi}} \frac{\frac{\partial}{\partial \phi}\left[\frac{k}{r^{2}} \frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial T}{\partial \phi}\right)\right]}{\frac{\partial}{\partial \phi}(\sin \phi)} \\
& =\frac{2 k}{r^{2}} \frac{\partial^{2} T}{\partial \phi^{2}}
\end{aligned}
\]

Therefore, at the singularities,
\[
\begin{align*}
& \frac{2 k}{r} \frac{\partial T}{\partial r}=2 k \frac{\partial^{2} T}{\partial r^{2}}, \quad r=0 \tag{8a}\\
& \frac{k}{r^{2} \sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial T}{\partial \phi}\right)=0, \quad r=0 \tag{8b}
\end{align*}
\]
and
\[
\begin{equation*}
\frac{k}{r^{2} \sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial T}{\partial \phi}\right)=\frac{2 k}{r^{2}} \frac{\partial^{2} T}{\partial \phi^{2}}, \quad \phi=0, \pi \tag{8c}
\end{equation*}
\]

The singularity at \(r=0\) can also be eliminated by approximating the center in a Cartesian form lation. \({ }^{3}\) This approach is discussed by Smith (ref. 10). A related question concerning a singularity for the cylindrical probleal is discussed by Albasiny (ref. 6). A third method of eliminating the singularity at \(r=0\) is to simply assume that a small but finite radius exists at the center; i.e., hollow-sphere approximation. All three approaches were examined in this investigation and will be discussed in a subsequent section of this report.
\(3_{\text {The singularities at }} r=0\) and \(\phi=0, \pi\) can also be eliminated by not specifying node points on the boundaries.

Equation (3) describes the heat transfer within a spherical region, and a solution is achieved by approximating the partial derivatives with the use of suituble inite-difference expressions involving the ind fendent and dependent variables. The two-dimensional spherical region with an \(r, \phi\) grid system imposed is shown in figure 2. An implicit central-difference equation for each grid point (i, j) within the specified regicn can be written as
\[
\begin{align*}
\rho C_{p}\left(\frac{T_{i, i}^{\prime}-T_{i, j}}{\Delta t}\right) & =k_{i, j}\left[\frac{T_{i, j+1}^{\prime}-2 T_{i, j}^{\prime}+T_{i, j-1}^{\prime}}{(\Delta r)^{2}}\right] \\
& +\frac{2 k_{i, j}}{r_{i, j}}\left(\frac{T_{i, j+1}^{\prime}-T_{i, j-1}^{\prime}}{2 \Delta r}\right) \\
& +\frac{k_{i, j}}{r_{i, j}^{2}}\left[\frac{T_{i+1, j}^{\prime}-2 T_{i, j}^{\prime}+T_{i-1, j}^{\prime}}{(\Delta \phi)^{2}}\right] \\
& +\frac{k_{i, j}}{r_{i, j}^{2} \cos \phi_{i, j}}\left(\frac{T_{i+1, j}^{\prime}-T_{i-1, j}^{\prime}}{2 \Delta \phi}\right) \\
& +q_{i, j}^{\prime \prime \prime} \tag{9}
\end{align*}
\]
where \(T^{\prime}\) is the unknown temperature. Equation (9) can be written as
\[
\begin{align*}
& {\left[\frac{k_{i, j}}{r_{i, j}^{2}(\Delta \phi)^{2}}+\frac{k_{i, j} \cos \phi_{i, j}}{r^{2} \sin \phi_{i, j}(2 \Delta \phi)}\right] T_{i+1, j}^{\prime}+\left[\frac{k_{i, j}}{(\Delta r)^{2}}+\frac{k_{i, j}}{r_{i, j} \Delta r} T_{i, j+1}^{\prime}\right.} \\
& -\left[\frac{2 k_{i, j}}{(\Delta r)^{2}}+\frac{2 k_{i, j}}{r_{i, j}^{2}(\Delta \phi)^{2}}+\frac{\rho C_{p}}{\Delta t}\right]_{i, j}^{\prime}+\left[\frac{k_{i, j}}{r_{i, j}^{2}(\Delta \phi)^{2}}-\frac{k_{i, j} \cos \phi_{i, j}}{r_{i, j}^{2} \sin \phi_{i, j}(2 \Delta \phi)}\right]_{i-1, j}^{\prime} \\
& +\left[\frac{k_{i, j}}{(\Delta r)^{2}}-\frac{k_{i, j}}{r_{i, j} \Delta r}\right]_{i, j-1}^{\prime}=-q_{i, j}^{\prime \prime \prime}-\frac{\rho C_{p}}{\Delta t} T_{i, j} \tag{10}
\end{align*}
\]

Rewriting equation (10) fields
\[
\begin{equation*}
A_{i, j} T_{i, j-1}^{\prime}+B_{i, j} T_{i-1, j}^{\prime}+C_{i, j} T_{i, j}^{\prime}+D_{i, j} T_{i+1, j}^{\prime}+E_{i, j} T_{i, j+1}^{\prime}=Q_{i, j} \tag{11}
\end{equation*}
\]

Equation (11) has five unknown temperatures per grid point (i,j). The values of \(A, B, C, D, E\), and \(Q\) are known on the basis of the previous time level and/or the previous iteration. A set of equations similar to equation (11) can be written for ali \(i_{s} j\) grid points within the region and on the boundaries. \({ }^{4}\) This matrix of equations can then be inverted to yield the unknowns, \(T_{i, j}^{\prime}\). For large systems of equations, this matrix solution can become very time consuming.

\section*{NUMERICAL SOLUTION TECHNIQUE}

Stone (ref. 2) developed the SIP, an iterative method for solving sets of algebraic equations that occur for multidimensional systems. This method has been used succe:ssfully in solving problems involving two-dimensional, steady-state heat conduction, as well as multidimensional flow in a petroleum reservoir (ref. 3). The foundation of the SIP calculation method is based on the approximate factoring of the five-diagonal matrix (five nonzero elements in each row of matrix) generated by equation (11) into three-diagonal upper and lower triangular matrices. The detailed mathematical reduction process required to derive the upper and lower triangular matrices is presented by Stone (ref. 2). The equations used in the SIP algorithm to solve for the unknown variable \(T_{i, j}\), together with the boundary condition restrictions, can be found in references 2 and 3.

A second method used in the solution of equation (11) is the ADIP (Peaceman and Rachford (ref. 8)), which reduces the number of unknowns to three, as obtained for simple, one-dimensional problems. Basically, the ADIP solves the equations in one direction, with the dependent variable in the second dimension assumed constant over the time interval. As an example, consider equation (11) for the first time step, in the \(\phi\) direction. \({ }^{5}\)
\[
\begin{equation*}
B T_{i-1, j}+C T_{i, j}^{\prime}+D T_{i+1, j}=Q_{i, j}-A T_{i, j-1}-E I_{i, j+1} \tag{12}
\end{equation*}
\]

\footnotetext{
\({ }^{4}\) The SIP boundary condition restrictions are illustrated in the appendix.
\({ }^{5}\) Although not specifically pointed out, each time step is split into two parts. The first one-half time step is differenced implicitly in \(\phi\) and explicitly in \(r\), whereas the second one-half time step is differenced implicitly in \(r\) and explicitly in \(\phi\).
}

The temperatures \(T_{i, j-1}\) and \(T_{i, j+1}\) are known from the previous time step. Application of equation (12) to a grid network yields a tridiagonal matrix of unknown temperatures. The advantages of solving a tridiagonal matrix rather than a pentadiagonal matrix as generated by equation (11) are evident.

In addition to the previous two methods, the weighted average approach of Crank and Nicolson (ref. 11) was used in conjunction with the SIP algorithm. The Crank-Nicolson (CN) modification is illustrated in the following application to equation (9).
\[
\begin{align*}
\rho C_{p}\left(\frac{T_{i, j}^{\prime}-T_{i, j}}{\Delta t}\right)= & \theta\left\{k_{i, j}\left[\frac{T_{i, j+1}^{\prime}-2 T_{i, j}^{\prime}+T_{i, j-1}^{\prime}}{(\Delta r)^{2}}\right]\right. \\
& +\frac{2 k_{i, j}}{r_{i, j}}\left(\frac{T_{i, j+1}^{\prime}-T_{i, j-1}^{\prime}}{2 \Delta r}\right) \\
& +\frac{k_{i, j}}{r_{i, j}^{2}}\left[\frac{T_{i+1, j}^{\prime}-2 T_{i, j}^{\prime}+T_{i-1, j}^{\prime}}{(\Delta \phi)^{2}}\right] \\
& \left.+\frac{\left.k_{i, j} \cos \phi_{i, j}\left(\frac{T_{i+1, j}^{\prime}-T_{i-1, j}^{\prime}}{2}\right)\right\}}{r_{i, j} \sin \phi_{i, j}}\right) \\
& +(1-\theta)\left\{k_{i, j}\left[\frac{T_{i, j+1}-2 T_{i, j}+T_{i, j-1}}{(\Delta r)^{2}}\right]\right. \\
& +\frac{2 k_{i, j}}{r_{i, j}}\left(\frac{T_{i, j+1}-T_{i, j-1}}{2 \Delta r}\right) \\
& +\frac{k_{i, j}}{r_{i, j}^{2}}\left[\frac{T_{i+1, j}-2 T_{i, j}+T_{i-1, j}}{(\Delta \phi)^{2}}\right] \\
& \left.+\frac{k_{i, j}}{r_{i, j}} \operatorname{sos} \phi_{i, j}\left(\frac{T_{i+1, j}-T_{i-1, j}}{2 \Delta \phi}\right)\right\} \\
& +q_{i, j}^{\prime \prime} \tag{13}
\end{align*}
\]

Equation (13) can be rewritten into the form of equation (11), which is consistent with the SIP formulation. For the CN method, \(\theta\) is set equal to 0.5 in equation (13). \({ }^{6}\) This method is designated simply as SIP/CN.

Because the SIP is an algorithm for solving a certain type of matrix, a table of geometrically arranged iteration parameters is normally emp \({ }^{*}\) oyed to speed convergence. Weinstein et al. (ref. 3) recommended a geometrical iteration parameter defined by the relation
\[
\begin{equation*}
1-\gamma_{m}=\left(1-\gamma_{\max }\right)^{\frac{m}{n-1}}, m=0,1, \ldots(n-1) \tag{14}
\end{equation*}
\]
where \(\gamma\) is the iteration parameter and \(n\) is the number of parameters (normally 4 to 10) in a cycle. The value of the iteration parameter lies between 0 and l. For a heat-conduction problem with constant properties (ref. 2),
\[
\begin{equation*}
\gamma_{\max }=1-\min \cdot\left[\frac{2(\Delta r)^{2}}{1+\frac{k_{\phi}(\Delta r)^{2}}{k_{r}(r \Delta \phi)^{2}}}, \frac{2(r \Delta \phi)^{2}}{1+\frac{k_{r}(r \Delta \phi)^{2}}{k_{\phi}(\Delta r)^{2}}}\right] \tag{15}
\end{equation*}
\]

For this study, a maximum \(\gamma\) value of 0.95 was used. A discussion of the physical and mathematical significances of the iteration paramoter can be found in references 2 and 3 .

\section*{COMPARATIVE NUMERICAL RESULTS}

To study the effect of various boundary conditions on the re? ative accuracy of the solution techniques, the following three examples are con idered. \({ }^{7}\)
\({ }^{6}\) Steen and Ali (ref. 5) used weighting values of 0.5 and 0.75 .
\({ }^{7}\) Any consistent set of units can be used in these examples. In this study, absolute numerical values are used instead of dimensionless quantities, for comparison purposes. Numerical values of \(k=0.8, C_{p}=0.4, \rho=130\), and \(R=1\) have been used in these examples.

Case 1-A homogeneous, two-dimensional, uniform surface temperature is specified. The boundary and initial conditions are
\[
\begin{aligned}
& T(R, \phi, t)=\text { constant surface temperature } \\
& \frac{\partial T}{\partial r}(0, \phi, t)=0 \\
& \frac{\partial T}{\partial \phi}(r, \phi, t)=0, \phi=0, \pi \\
& q^{\prime \prime}=0 \\
& T(r, \phi, 0)=T_{i}
\end{aligned}
\]

This first example is for a sphere with a specified surface temperature. The surface boundary condition is such that \(T(R, \phi)=\) constant. An analytic solution is available (ref. 12).

Case 2 - A homogeneous, two-demension, uniform heat generation is specified.
\[
\begin{aligned}
T(R, \phi, t) & =T(r, \phi, 0)) \\
& =T_{i} \\
\frac{\partial T}{\partial r}(0, \phi, t) & =0 \\
\frac{\partial T}{\partial \phi}(r, \phi, t) & =0, \quad \phi=0, \pi \\
q^{\prime \prime} \prime(r, \phi, t) & =\text { constant }
\end{aligned}
\]

Example 2 considers a sphere with uniform internal heat generation. Both the initial and surface temperatures are set equal to zero. An analytic solution for this case can be found in reference 13.

Case 3 - A homogeneous, two-dimensional, nonuniform surface temperature is specified.
\[
\begin{aligned}
& T(R, \phi, t)=R^{2}\left(\frac{3 \cos 2 \phi+1}{4}\right) \\
& \frac{\partial T}{\partial r}(0, \phi, t)=0 \\
& \frac{\partial T}{\partial \phi}(r, \phi, t)=0, \phi=0, \pi \\
& q^{\prime \prime} \prime=0 \\
& T(r, \phi, 0)=0
\end{aligned}
\]

This third ex mple considers a sphere of unit radius \(\mathrm{R}=1\), with the surface temperature specified as a function of \(\cos \phi\). An analytic solution for this case is presented in reference 7.

It should be noted that cases 1 and 2 are one-dimensional problems; however, the numerical computations were performed with the use of a twodimensional model. Case 3 is used to represent the accuracy of the numerical techniques for a two-dimensional problem with a zero temperature along \(\phi=54.7356\) degrees and \(\phi=125.2644\) degrees for all values of \(r\). For these cases, the results are given in terms of the difference between the temperature obtained by the exact solution and that obtained form the various numerical solution techniques. These results are called the temperature errors, defined as \(T\) exact \(-T_{\text {cal. }}\). As a convenient reference for comparing the numerical data, table I summarizes the various conditions used to generate the results given in tables II through IV. For example, numerical time-step effects can be studied by reference to tables II(a) and II(b). Tables II(a) through II(c) present a comparison of the numerical results for locations within a sphere with a specified constant surface temperature condition of \(r / R=0\) and \(r / R=0.5\). The temperature history at the geometrical center, \(r / R=0\), is of special interest because a discontinuity in equation (3) occurs at this location. A comparison of the results at \(r=0\) indicates that the SIP with CN modification (SIP/CN) with a geometrically variable \(\gamma\) and the ADIP are the most accurate. A maximum temperature error of 30.631 degrees (3.96 percent error) occurred at a time unit of 10 after the start of the transient. Although no \(\phi\) variation in the surface temperature was specified, where a \(\phi\) variation in the temperature was calculated, the error range in the \(\phi\) direction is shown.

The standard SIP methods (constant and variable \(\gamma\)) had the greatest absolute errors. Also shown in tables II(a) through II(c) are the hollowsphere and rectangular approximation solutions used at \(r=0\). Again, a large absolute error was found for these two approximate solutions. The effect of the time step is shown in tables II(a) through II(c): reduction of the time step to \(\Delta t=0.1\) resulted in a significant reduction in the absolute error for all methods investigated. The effect of location, \(r / R=0.5\), on error again shows the SIP/CN (variable \(\gamma\)) and ADIP methods to be the most accurate.

The effect of node size on accuracy can be seen by comparing the results of tables \(I I(b)\) and \(I I(d)\) for \(r=0, \Delta t=1.0\). For a reduction of \(\Delta r=0.10\) to \(\Delta r=0.05\), the error with use of the SIP (\(\gamma=\) constant) increased from 30.631 to 92.310 degrees for \(\Delta t=1.0\). A similar increase in the temperature error for the \(\operatorname{SIP} / C N(\gamma=\) valiable \()\) and the ADIP was experienced. \({ }^{8}\)

However, for a node reduction of \(\Delta r=0.1\) to \(\Delta r=0.05\), at a time step of \(\Delta t=0.10\), the absolute error decreased for both the SIP/CN and the ADIP methods. The results in tables II(a) through II(e) clearly indicate the effect of time step and node size on numerical accuracy for the SIP approach.

Tables III(a) and III(b) present the numerical results for a sphere with internal heat generation. Once again, the SIP/CN (variable \(\gamma\)) and the ADIP methods are the most accurate. For this particular case, a reduction in the time step of \(\Delta t=1.0\) to \(\Delta t=0.1\) resulted in a greater accuracy, in general, for the five methods, except for the SIP/CN (variable \(\gamma\)) and the ADIP methods.

Tables IV(a) through IV(g) present the numerical results for a sphere with the surface temperature specified as a \(\cos \phi\) function. Table IV(a) is the analytic solution as outlined in reference 7. For case 3, both an absolute error defined by
\[
T_{\text {error }}=T_{\text {exact }}-T_{\text {cal. }}
\]
and a relative error defined by
\[
T_{\text {rel }}=\frac{T_{\text {exact }}-T_{\text {cal }}}{T_{\text {exact }}}
\]
were used to evaluate the numerical procedures. Tables IV(b), IV(d), and IV \((f)\) show the steady-state absolute error for ADIP, SIP/CN (\(\alpha=\) variable), and SIP \((\alpha=\) variable \() /\) hollow-sphere approximation, respectively. Tables \(\operatorname{IV}(c), \operatorname{IV}(e)\), and \(\operatorname{IV}(g)\) show the relative error for the respective methods. As expected, the least error occurs for \(r\) values near \(R=1\) and for \(\phi\) values greater than 55 degrees and 125 degrees. As \(r\) approaches zero, the relative error increases quite rapidly. This same effect is observed as \(\phi\) approaches 55.74 degrees and 125.26 degrees, where temperature is zero for \(r\) values. These errors are a result of the assumption (e.g., eq. 5) used in numerical procedures and illustrate the sensitivity when the solution is zero. Similar results are shown by Kee in reference 7, where the restrictions of equations (\(8 a\)) and (8 b) were not employed.
\({ }^{8}\) A similar result was also noted by Barakat and Clark (ref. 14).

\section*{CONCLUDING REMARKS}

Two basic numerical solutions (the strongly implicit procedure (SIP) and the alternating-direction implicit prosedure (ADIP)) to the diffusion equation in spherical coordinates have been presented. The validity and accuracy of these solutions are demonstrated by comparing the results obtained therby with those of analytical solutions. Previous studies have shown that both methods compare favorably for the diffusion equation in Cartesian coordinates. The standard SIP appears to be slightly less efficient than the ADIP for the solid spherical problem studied in this investigation. This decrease in efficiency may be a direct result of the requirement that the dependent variable be calculated for the center of the sphere, where a discontinuity in the governing equation occurs. However, the Crank-Nicolson modification of the SIP gave essentially the same results as the ADIP for the cases studied.

In conclusion, it should be mentioned that the SIP algorithm has been shown to be far superior to the ADIP for simulation problems involving multiphase flow in porous media. It has been possible to obtain converged solutions to coupled systems of partial differential equations with the SIP when both the ADIP and successive over-relaxation procedures have failed. It should also be pointed out that a comparison in which a constant-property rectangular region was used showed the ADIP to be superior to the SIP, but the SIP + 2 shown more efficient for other rectangular cases involving property anisc: ophy and/or irregular boundary conditions.

Lyndon B. Johnson Space Center
National Aerorautics and Space Administration
Houston, Texas, January 24, 1977
986-15-31-04-72

\section*{REFERENCES}
1. Trent, Donald S.; and Welty, James R.: A Summary of Numerical Methods for Solving Transient Heat Conduction Problems. Bull. No. 49, Eng. Expt. Sta., Oregon State Univ., Oct. 1974.
2. Stone, Herbert L.: Iterative Solution of Implicit Approximations of Multidimensional Partial Differential Equations. Siam J. Numer. Anal., vol. 5, no. 3, Sept. 1968, pp. 530-558.
3. Weinstein, H. G.; Stone, H. L.; and Kwan, T. V.: Simultaneous Solution of Multiphase Reservoir Flow Equations. Suc. Petrol. Eng. J., vol. 10, no. 2, June 1970, pp. 99-110.
4. Curry, Donald M.: Two-Dimensional Analysis of Heat and Mass Transfer in Porous Media Using the Strongly Implicit Procedure. NASA TN D-7608, 1974.
5. Steen, H. Dale; and Ali, S. M. Farouq: Comparative Evaluation of the Strongly Implicit Procedure (SIP) for Gas Reservoir Simulation. AIME Paper SPE-3562, Oct. 1971.
6. Albasiny, E. L.: On the Numerical Solution of a Cylindrical HeatConduction Problem. Quart. J. Mech. Appl. Math, vol. XIII, pt. 3, 1960, pp. 374-384.
7. Kee, R. J.: A Finite Difference Algorithm for the Diffusion Equation in Spherical Coordinates. SCL-DR-720017, Sandia Laboratorier, Aug. 1972.
8. Peaceman, D. W.; and Rachford, H. H.: The Numerical Solution of Parabolic and Elliptic Differential Equations. J. Soc. Ind. Appl. Math., vol. 3, 1955, pp. 28-41.
9. Adams, J. Alan; and Rogers, David F.: Computer-Aided Heat Transfer Analysis. McGraw-Hill, 1973.
10. Smith, G. D.: Numerical Solution of Partial Differential Equations, With Exercises and Worked Solutions. Oxford Univ. Press, 1965.
11. Crank, J.; and Nicolson, P.: A Practical Method for Numerical Evaluation of Solutions of Partial Differential Equations of the Heat-Conduction Type. Proc. Camb. Phil. Soc., vol. 43, Jan. 1947, pp. 50-67.
12. Schneider, P. J.: Conduction Heat Transfer. Addison-Wesley Pub. Co. (Cambridge, Mass.), 1957.
13. Carslaw, H. S.; and Jaeger, J. C.: Conduction of Heat in Solids. Second ed., Oxford Univ. Press, 1959.
14. Barakat, H. Z.; and Clark, J. A.: On the Solution of the Diffusion Equations by Numerical Methods. J. Heat Transfer, Trans. ASME, vol. \(88-\mathrm{C}\), no. 4 , Nov. 1966 , pp. 421-427.

TABLE I.- SUMMARY OF CONDITIONS STUDIED
\begin{tabular}{|c|c|c|c|c|}
\hline \(r / \mathrm{R}\) & \(\Delta t\) & \(\Delta \mathrm{r}\) & Table no. & Remarks \\
\hline \multicolumn{5}{|c|}{Case 1} \\
\hline 0 & 0.1 & 0.10 & II (a) & \\
\hline 0 & 1.0 & . 10 & II(b) & \\
\hline . 5 & 1.0 & . 10 & II(c) & \\
\hline 0 & 1.0 & . 05 & II (d) & \\
\hline 0 & . 1 & . 05 & II(e) & \\
\hline \multicolumn{5}{|c|}{Case 2} \\
\hline 0.5 & 1.0 & 0.10 & III (a) & \\
\hline . 5 & .1 & . 10 & III (b) & \\
\hline \multicolumn{5}{|c|}{Case 3} \\
\hline -- & -- & -- & IV (a) & Analytical solution \\
\hline -- & 1.0 & 0.025 & \(\operatorname{IV}(\mathrm{b}), \operatorname{IV}(\mathrm{c})\) & ADIP \\
\hline -- & 1.0 & . 025 & \(\operatorname{IV}(\mathrm{d}), \operatorname{IV}(\mathrm{e})\) & SIP/CN (\(\alpha=\) variable \()\) \\
\hline -- & 1.0 & . 025 & \(\operatorname{IV}(\mathrm{f}), \operatorname{IV}(\mathrm{g})\) & \(\operatorname{SIP}(\alpha=\) variable \() /\) hollow-sphere approximation \\
\hline
\end{tabular}

TABLE II.- CASE 1
(a) \(r / R=0 ; \Delta t=0.1 ; \Delta r=0.10\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Method} & \multicolumn{4}{|l|}{Temperature error (\(\mathrm{T}_{\text {exact }}-\mathrm{T}_{\mathrm{cal}} .^{\mathrm{A}}\), deg, at a time unit and corresponding Texact of -} \\
\hline & \begin{tabular}{l}
5 \\
\(597.833^{\circ}\)
\end{tabular} & \[
\begin{gathered}
10 \\
773.586^{\circ}
\end{gathered}
\] & \[
\begin{gathered}
20 \\
918.735^{\circ}
\end{gathered}
\] & \[
\begin{gathered}
50 \\
959.566^{\circ}
\end{gathered}
\] \\
\hline \(\operatorname{SIP}\left(\gamma=\gamma_{\max }.\right)\) & -3.672
-3.756 & 2.606
2.533 & 1.815
1.797 & 0.054 \\
\hline SIP (\(\gamma=\) variable \()\) & \(-4.074\) & 2.146 & 1.637 & . 049 \\
\hline SIP/CN \(\left(\gamma=\gamma_{\max }.\right)\) & -2.978
-3.006 & \begin{tabular}{l}
.563 \\
.540
\end{tabular} & \[
\begin{aligned}
& .735 \\
& .731
\end{aligned}
\] & . 025 \\
\hline SIP/CN (\(\gamma=\) variable) & -3.099 & . 428 & . 685 & . 023 \\
\hline ADIP & -3.037 & . 425 & . 680 & . 026 \\
\hline \(\operatorname{SIP}\left(\gamma=\gamma_{\max }\right) /\) hollow-sphere approximation & 2.973 & 7.805 & 1.969 & -1.384 \\
\hline \[
\begin{gathered}
\text { SIP }\left(\gamma=\gamma_{\max } .\right) / \\
\text { rectangular } \\
\text { approximation }
\end{gathered}
\] & 3.862 & 9.017 & 3.355 & . 071 \\
\hline
\end{tabular}
\(\mathrm{a}_{\text {Texact }}=\) exact temperature; \(\mathrm{T}_{\text {cal }}=\) calculated temperature.
(b) \(r / R=0 ; \Delta t=1.0 ; \Delta r=0.10\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Method} & \multicolumn{4}{|l|}{Temperature error (\(\left.T_{\text {exact }}-T_{\text {cal }}\right)^{\text {a }}\), deg, at a time unit and corresponding Texact of -} \\
\hline & \[
\begin{gathered}
5 \\
597.833^{\circ}
\end{gathered}
\] & \[
\begin{gathered}
10 \\
773.586^{\circ}
\end{gathered}
\] & \[
\begin{gathered}
20 \\
918.735^{\circ}
\end{gathered}
\] & \[
\begin{gathered}
50 \\
959.566^{\circ}
\end{gathered}
\] \\
\hline \(\operatorname{SIP}\left(\gamma=\gamma_{\max }.\right)\) & -3.094
-.198 & 30.631
25.886 & \[
\begin{aligned}
& 17.254 \\
& 15.798
\end{aligned}
\] & \[
\begin{array}{r}
0.572 \\
.547
\end{array}
\] \\
\hline \(\operatorname{SIP}(\gamma=\) variable \()\) & -10.293 & 15.585
15.485 & \[
\begin{aligned}
& 10.309 \\
& 10.283
\end{aligned}
\] & . 334 \\
\hline \(\mathrm{SIP} / \mathrm{CN}\left(\gamma=\gamma_{\max }.\right)\) & .141
4.255 & 9.986
4.886 & 3.914
2.959 & \[
\begin{aligned}
& .09 \\
& .07
\end{aligned}
\] \\
\hline SIP/CN (\(\gamma=\) variable) & -. 821 & . 304 & \[
\begin{aligned}
& .460 \\
& .455
\end{aligned}
\] & . 017 \\
\hline ADIP & 1.095 & -1.13 & -. 306 & -. 002 \\
\hline \begin{tabular}{l}
SIP \(\left(\gamma=\gamma_{\max }\right.\).)/ \\
hollow-sphere \\
approximation
\end{tabular} & 8.019 & 35.133 & 17.083 & -. 875 \\
\hline \[
\begin{aligned}
& \text { SIP }\left(\gamma=\gamma_{\max } .\right) / \\
& \text { rectangular } \\
& \text { approximation }
\end{aligned}
\] & 8.525 & 36.094 & 18.456 & -. 145 \\
\hline
\end{tabular}
\(a_{\text {exact }}=\) exact temperature; \(T_{c a l}=\) calculated temperature.

TABLE II.- Continued
\[
\text { (c) } r / R=0.5 ; \Delta t=1.0 ; \Delta r=0.10
\]

\(a_{T}{ }_{\text {exact }}=\) exact temperature; \(T_{c a l}=\) calculated temperature.

TABLE II.- Continued
(d) \(r / R=0 ; \Delta t=1.0 ; \Delta r=0.05\)

TABLE II.- Concluded
(e) \(r / R=0 ; \Delta t=0.1 ; \Delta r=0.05\)

\footnotetext{
\(\mathrm{a}_{\mathrm{T}}\) exact \(=\) exact temperature; \(T_{\text {cal }}=\) caiculated temperature.
}

TABLE III.- CASE 2
(a) \(r / R=0.5 ; \Delta t=1.0 ; \Delta r=0.10\)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Method} & \multicolumn{3}{|l|}{Temperature error (\(\left.\mathrm{T}_{\text {exact }}-\mathrm{T}_{\text {cal }}\right)^{\mathrm{a}}\), deg, at a time unit and corresponding \(T\) exact of -} \\
\hline & \[
\begin{gathered}
10 \\
2.41849^{\prime}
\end{gathered}
\] & \[
\begin{gathered}
30 \\
3.0911^{\circ}
\end{gathered}
\] & \[
\begin{gathered}
50 \\
3.12337^{\circ}
\end{gathered}
\] \\
\hline \(\operatorname{SIP}\left(\gamma=\gamma_{\text {max }}.\right)\) & \[
\begin{array}{r}
0.12552 \\
.12407
\end{array}
\] & 0.02150
.02117 & \[
\begin{array}{r}
0.00206 \\
.00203
\end{array}
\] \\
\hline SIP (\(\gamma=\) variable \()\) & \[
\begin{aligned}
& .08681 \\
& .08676
\end{aligned}
\] & . 01411 & . 00127 \\
\hline SIP/CN \(\left(\gamma=\gamma_{\text {max }}.\right)\) & \[
\begin{aligned}
& .02132 \\
& .02030
\end{aligned}
\] & \[
\begin{aligned}
& .00319 \\
& .00317
\end{aligned}
\] & . 00026 \\
\hline SIP/CN (\(\gamma=\) variable) & . 00679 & . 00099 & . 00008 \\
\hline ADIP & . 00038 & . 00010 & 0 \\
\hline
\end{tabular}

TABLE III.- Concluded
(b) \(r / R=0.5 ; \Delta t=0.1 ; \Delta r=0.10\)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Method} & \multicolumn{3}{|l|}{Temperature error (\(\left.T_{\text {exact }}-T_{\text {cal }}\right)^{\mathrm{a}}\), deg, at a time unit and corresponding \(T_{\text {exact }}\) or -} \\
\hline & \[
\begin{gathered}
10 \\
2.41849^{\circ}
\end{gathered}
\] & \[
\begin{gathered}
30 \\
3.0911^{\circ}
\end{gathered}
\] & \[
\begin{gathered}
50 \\
3.12337^{\circ}
\end{gathered}
\] \\
\hline \(\operatorname{SIP}\left(\gamma=\gamma_{\text {max }}\right.\). \()\) & \[
\begin{array}{r}
0.01796 \\
.01788
\end{array}
\] & 0.00266 & 0.00021 \\
\hline SIP (\(\gamma=\) variable \()\) & . 01689 & . 00250 & . 00020 \\
\hline SIP/CN \(\left(\gamma=\gamma_{\max }\right.\). \()\) & \[
\begin{aligned}
& .00910 \\
& .00908
\end{aligned}
\] & . 00134 & . 00011 \\
\hline SIP/CN (\(\gamma=\) veriable) & . 0088 & . 00129 & . 00010 \\
\hline ADIP & . 00874 & . 00129 & . 00011 \\
\hline
\end{tabular}
\(\mathrm{a}_{\mathrm{T}}\) exact \(=\) exact temperature; T cal. \(=\) calculated temperature.

TABLE IV.- CASE 3
(a) Analytic solution
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{l}
Angular \\
position \\
\((\phi)\) deg
\end{tabular}} & \multicolumn{7}{|c|}{ Temperature (T), deg, at a radial position (\(r\)) of -} \\
\cline { 2 - 8 } & 1.00 & 0.75 & 0.50 & 0.25 & 0.15 & 0.10 & 0.05 \\
\hline 0 & 1.0000 & 0.56250 & 0.250000 & 0.062500 & 0.02250 & 0.01000 & 0.002500 \\
18.46150 & .849582 & .477890 & .212395 & .0530989 & .0191156 & .00849582 & .00212396 \\
36.9231 & .458663 & .257998 & .114666 & .0286664 & .0103199 & .00458663 & .00114666 \\
55.3846 & -.0159537 & -.00897393 & -.00398841 & -.000997103 & -.000358957 & -.000159537 & -.0000398841 \\
73.8462 & -.383892 & -.215940 & -.0959731 & -.0239933 & -.00863758 & -.00383893 & -.000959731 \\
83.0769 & -.478206 & -.268991 & -.119552 & -.0298879 & -.0107596 & -.00478206 & -.00119552 \\
96.9231 & -.478206 & -.268991 & -.119552 & -.0298879 & -.0107596 & -.00478206 & -.00119552 \\
106.1540 & -.383893 & -.215940 & -.0959731 & -.0239933 & -.00863758 & -.00383893 & -.000959732 \\
124.615 & -.0159538 & -.00897404 & -.00398846 & -.000997115 & -.000358961 & -.000159538 & -.0000398846 \\
143.077 & .458663 & .257998 & .114666 & .0286664 & .0103199 & .00458663 & .00114666 \\
161.538 & .849582 & .477890 & .212395 & .0530989 & .0191156 & .00849582 & .00212395 \\
180.00 & 1.0000 & .56250 & .250000 & .062500 & .02250 & .01000 & .002500 \\
\hline
\end{tabular}
(b) ADIP - absolute error at steady-state
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ingular & \multicolumn{7}{|r|}{Temperature absolute error (Texact \(\left.{ }^{(T} T_{\text {cal }}\right)^{a}\), deg, at a radial position (r) of -} \\
\hline (\(\phi\)), deg & 1.00 & 0.75 & 0.50 & 0.25 & 0.15 & 0.10 & 0.050 \\
\hline 0 & 0 & -0.000708 & -0.000864 & -0.0006358 & -0.0004991 & -0.0004358 & -0.00038490 \\
\hline 18.46150 & 0 & -. 000632 & -. 0000779 & -. 0005919 & -. 0004773 & -. 00042402 & -. 00038105 \\
\hline 36.9231 & 0 & -. 000414 & -. 000544 & -. 0004749 & -. 0004196 & -. 00039289 & -. 00037093 \\
\hline 55.3846 & 0 & -. 00014885 & -. 00026036 & -. 000332609 & -. 000349454 & -. 00035506 & -. 000358630 \\
\hline 73.8462 & 0 & .000057 & -. 0000398 & -. 0002223 & -. 00029508 & -. 00032572 & -. 000349093 \\
\hline 83.0769 & 0 & . 00011 & . 000016 & -. 000194 & -. 0002811 & -. .0003182 & -. .000346652 \\
\hline 96.9231 & 0 & . 00011 & .000016 & -. 000194 & -. 0002811 & -. .0003182 & -. .000346652 \\
\hline 106.1540 & 0 & .000057 & -. 0000398 & -. 0002223 & -. 00029507 & -.00032573 & -. 000349094 \\
\hline 124.6150 & 0 & -. 0001488 & -. 00026034 & -. 000332612 & -. .000349456 & -. 00035507 & -. 000358633 \\
\hline 143.077 & 0 & -.000414 & -. 000544 & -. 0004749 & -. 0004196 & -. 00039290 & -. 00037093 \\
\hline 161.538 & 0 & -. 000632 & -. 000779 & -. 0005919 & -. 0004773 & -. 00042403 & -. 00038107 \\
\hline 180.00 & 0 & -. 000708 & -. 000864 & -.0005359 & -. 0004991 & -. 0004358 & -. 00038491 \\
\hline
\end{tabular}
\(\mathrm{a}_{T_{\text {exact }}}=\) exact temperature \(; T_{c a l}=\) calculated temperature.

TABLE IV.- Continued
(c) ADIP - relative error at steady-state
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Angular position & \multicolumn{4}{|c|}{Temperature relative error (\({ }^{(T}\) exact} & exact \()^{\text {a }}\) & dial pos & (r) of - \\
\hline (\(\phi\)), deg & 1.00 & 0.75 & 0.50 & 0.25 & 0.15 & 0.10 & 0.050 \\
\hline 0 & 0 & -0.0012587 & -0.003456 & -0.010173 & -0.022182 & -0.043580 & -0.15396 \\
\hline 18.46150 & 0 & -. 0013225 & -. 003667 & -. 011147 & -. 024969 & -. 049910 & -. 179410 \\
\hline 36.9231 & 0 & -. 0016047 & -. 00047445 & -. 016568 & -. 040659 & -. 085660 & -. 32349 \\
\hline 55.3846 & 0 & . 016587 & \[
.065279
\] & \[
.33358
\] & . 97353 & 2.2256 & 8.9918 \\
\hline 73.8462 & 0 & -. 00026396 & . 00041470 & . 0092651 & . 034162 & . 084847 & . 36374 \\
\hline 83.0769 & 0 & -. 00040894 & -. 00013383 & . 0064909 & . 026126 & .066540 & . 28996 \\
\hline 96.9231 & 0 & -. 00040894 & -. 00013383 & . 0064909 & . 026126 & . .066540 & . 28996 \\
\hline 106.1540 & 0 & -. 00026396 & . 00041470 & . 0092651 & . 034161 & . .084847 & . 36374 \\
\hline 124.6150 & 0 & . 016581 & . 065273 & .33357 & . 97352 & 2.2256 & 8.9918 \\
\hline 143.077 & 0 & -. 0016047 & -. 0047445 & -. 016568 & -. 040659 & -. 085662 & -. 32349 \\
\hline 161.538 & 0 & -. 0013225 & -. .0036677 & -. 0101147 & -. 024969 & -. .049910 & -. -.17942 \\
\hline 180.00 & 0 & -. 0012587 & -. 003456 & -.010174 & -. 022182 & -. 043580 & -. 15396 \\
\hline
\end{tabular}
\(\mathrm{a}_{\text {exact }}=\) exact temrerature; T cal. \(=\) calculated temperature.
(d) \(\operatorname{SIP} / C N(\alpha=\) variable) - absolute error at steady-state
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Angular position (\(\phi\)), deg} & \multicolumn{4}{|c|}{Temperature absolute error (\(T\)} & \multicolumn{3}{|l|}{deg, at a radial position (\(r\)) of -} \\
\hline & 1.00 & 0.75 & 0.50 & 0.25 & 0.15 & 0.10 & 0.050 \\
\hline 0 & 0 & \(-0.000716\) & -0.000865 & -0.0006096 & \(-0.0004465\) & -0.0003796 & \(-0.00033054\) \\
\hline 18.46150 & 0 & -. 000640 & -. 0000779 & -. 0005912 & -. 0004793 & -. 00042905 & -. 00036815 \\
\hline 36.9231 & 0 & -. 000418 & -. .000544 & -. 0004747 & -. 0004187 & -. 00039283 & -. 00037706 \\
\hline 55.3846 & 0 & -. 00014826 & -. 00026011 & -. 000332297 & -. 000349282 & -. 000353759 & -. 00036516 \\
\hline 73.8462 & 0 & . 00006 & -. 0000395 & -. 000222 & -. 00029488 & -. 00032509 & -. .000351408 \\
\hline 83.0769 & 0 & . 000115 & . 000017 & -. 0001937 & -. 0002808 & -. 00031788 & -. .0003467 \\
\hline 96.9231 & 0 & . 200115 & . 000017 & -. 0001937 & -. 0002808 & -. 00031826 & -. 00034367 , \\
\hline 106.1540 & 0 & . 00006 & -. 0000395 & -. 000222 & -. 00029472 & -. 0003260 & -. 00034447 \\
\hline 124.615 & 0 & -. 00014832 & -. 0002602 & -. 000332423 & -. 000349284 & -. 00035566 & -. 0003517636 \\
\hline 143.077 & 0 & -. 000418 & -. 0000544 & -. 0004747 & -. 0004198 & -. 00039245 & -. 0003648 \\
\hline 161.538 & 0 & -. 000639 & -. 000779 & -. 0005922 & -. 0004752 & -. 00041672 & -. 00039205 \\
\hline 180.00 & 0 & -. 000716 & -. 000865 & -. 0006958 & -. 0006199 & -. 0005674 & -. 00051088 \\
\hline
\end{tabular}

\footnotetext{
\(a_{T_{\text {exact }}}=\) exact temperature; \(T_{c a l} .=\) calculated temperature.
}

TABLE IV.- Continued
(e) \(\operatorname{SIP} / C N(\alpha=\) variable) - relative error at steady-state
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Angular \\
position \\
(\(\phi\)), deg
\end{tabular}} & \multicolumn{7}{|r|}{Temperature relative error (\(\left.\left(T_{\text {exact }}-T_{\text {cal }}\right) / T_{\text {exact }}\right)^{a}\) at a radial position (r) of -} \\
\hline & 1.00 & 0.75 & 0.50 & 0.25 & 0.15 & 0.10 & 0.050 \\
\hline 0 & 0 & -0.0012729 & -0.00346 & -0.0097536 & -0.019844 & -0.03796 & -0.132216 \\
\hline 18.46150 & 0 & -. 0013392 & -. 0036677 & -. 011134 & -. 025074 & -. 05050 & -. 17333 \\
\hline 36.9231 & 0 & -. 0016202 & -. 0047442 & -. 016559 & -. 040572 & \(-.085647\) & -. 32883 \\
\hline 55.3846 & 0 & . 016521 & . 065216 & . 33326 & . 97305 & 2.2174 & 9.15553 \\
\hline 73.8462 & 0 & -. 00027785 & -. 00041157 & . 0092526 & . 034139 & . 084682 & . 36615 \\
\hline 83.0769 & 0 & . 00042752 & -. 0001422 & . 0064809 & . 026098 & . 066473 & .28999 \\
\hline 96.9231 & 0 & .00042752 & -.0001422 & . 0064809 & . 026098 & . 066552 & .28747 \\
\hline 106.1540 & 0 & -. 00027785 & -.00041157 & . 0092526 & .034121 & . 084919 & . 35892 \\
\hline 124.615 & 0 & . 016528 & . 065236 & . 33338 & .97304 & \[
2.2293
\] & 8.81953 \\
\hline 143.077 & 0 & -. 0016202 & -. 0047442 & -. 016559 & -. 040679 & -. 085564 & -. 3181.4 \\
\hline 161.538 & 0 & -. 0013371 & -. 0036677 & -. 011153 & -. 024859 & -. 049050 & -. 18459 \\
\hline 180.00 & 0 & -. 0012729 & -. 00346 & -. 011133 & -. 027551 & -. 05674 & -. 204352 \\
\hline
\end{tabular}
(f) SIP/hollow-sphere approximation (\(\alpha=\) variable) - absolute error at steady-state
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Angular position (\(\phi\)), deg} & \multicolumn{7}{|r|}{Temperature absolute error (\(\mathrm{T}_{\text {exact }}-\mathrm{T}_{\text {cal }}\). \(^{\mathrm{a}}\), deg, at a radial position (r) of -} \\
\hline & 1.00 & 0.75 & 0.50 & 0.25 & 0.15 & 0.10 & 0.050 \\
\hline 0 & 0 & -0.000706 & -0.000862 & -0.0006318 & -0.0004942 & -0.0004307 & -0.00037945 \\
\hline 18.46150 & 0 & -. 000631 & -. 000777 & -. 0005878 & -. 0004724 & -. 00041636 & -. 00037561 \\
\hline 36.9231 & 0 & -. 000413 & -. 000542 & -. 0004707 & -. 00004147 & -. 00038774 & -. 00036554 \\
\hline 55.3846 & 0 & -. 00014737 & -. 00025767 & -. 00032823 & -. 000344577 & -. 0003449924 & -. 0003532921 \\
\hline 73.8462 & 0 & . 000058 & -. 0000369 & -.0002179 & -. 00029017 & -. 0003206 & -. 000343794 \\
\hline 83.0769 & 0 & . 000112 & -. 000019 & -. 0001896 & -. 0002762 & -. 00031307 & -. 000341364 \\
\hline 96.9231 & 0 & . 000112 & -. 000019 & -. 0001896 & -. 0002762 & -. 00031307 & -. 000341367 \\
\hline 106.1540 & 0 & . 000058 & -. 0000369 & -. 0002179 & -. 00029017 & -. 0003206 & -. 000343803 \\
\hline 124.6150 & 0 & -. 00014733 & -. 00025766 & -. 000328325 & -. 000344587 & -. 000349936 & -. 0003533106 \\
\hline 143.077 & 0 & -.000413 & -. 000542 & -. 0004707 & -. 0004148 & -. 00038777 & -. 00036557 \\
\hline 161.538 & 0 & -. 000631 & -. 000777 & -. 0005878 & -. 0004725 & -. 0004189 & -. 00037567 \\
\hline 180.00 & 0 & -. 000706 & -. 000862 & -. 0006318 & -.0004943 & -. 0004307 & -. 0003795 \\
\hline
\end{tabular}

TABLE IV.- Concluded
(g) SIP/hollow-sphere approximation (\(\alpha=\) variable) - relative error at steady-state
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Angular \\
position \\
\((\phi)\), deg
\end{tabular} & \multicolumn{6}{|c|}{ Temperature relative error (\(\left.T_{\text {exact }}-T_{\text {eal }}\right) / T\) exact \()^{a}\) at a radial position (\(r\)) of -} \\
\cline { 2 - 9 } & 1.00 & 0.75 & 0.50 & 0.25 & 0.15 & 0.10 & 0.050 \\
\hline 0 & 0 & -0.0012551 & -0.003448 & -0.010109 & -0.021964 & -0.04307 & -0.15178 \\
18.6415 & 0 & -.0013204 & -.0036583 & -.011070 & -.024713 & -.049302 & -.17684 \\
36.9231 & 0 & -.001608 & -.0047268 & -.016420 & -.040184 & -.084537 & -.31879 \\
55.3846 & 0 & .016422 & .064605 & .32918 & .95994 & 2.1934 & 8.8580 \\
73.8462 & 0 & -.00026859 & .00038448 & .0090817 & .039594 & .083513 & .35822 \\
83.0769 & 0 & -.00041637 & .00015893 & .0063437 & .025670 & .065468 & .28554 \\
96.9231 & 0 & -.00041637 & .00015893 & .0063437 & .025670 & .065468 & .28554 \\
106.1540 & 0 & -.00026859 & .00038448 & .0090817 & .033594 & .083513 & .35823 \\
124.6150 & 0 & .016417 & .064601 & .32927 & .95996 & 2.1934 & 8.8583 \\
143.077 & 0 & -.0016008 & -.0047268 & -.016420 & -.040194 & -.084544 & -.31881 \\
161.538 & 0 & -.0013204 & -.0036583 & -.011070 & -.024718 & -.049302 & -.17687 \\
180.00 & 0 & -.0012551 & -.003448 & -.010109 & -.021969 & -.04307 & -.15178 \\
\hline
\end{tabular}

Figure 1.- Spherical coordinate system.

Figure 2.- Finite-difference crid network.

\section*{BOUNDARY CONDITION REIATIONS WITH USE OF}

\section*{THE STRONGLY IMPLICIT TECHNIQUE}

The transient-heat-conduction equation in spherical coordinates (eq. (3)) is put in finite-difference form at \(r=0\) as an illustration of the SIP boundary condition requirements.

SOLID SPHERE

The SIP boundary restrictions require that
\[
\begin{gather*}
A_{i, 0} ; E_{i, R}=0 \text { for } \phi=0, \pi \tag{16}\\
B_{\phi=0, j} ; D_{\phi=\pi, j}=0 \text { for } r=0, R \tag{17}
\end{gather*}
\]

As an illustration of these boundary conditions, consider the singularity located at the geometrical center, \(r=0\), of the sphere.

By employing the boundary conditions represented by equations (8 a) and (8 b), equation (3) becomes
\[
\begin{equation*}
\rho C_{p} \frac{\partial T}{\partial t}=3 k \frac{\partial^{2} T}{\partial r^{2}}+q^{\prime \prime \prime} \tag{18}
\end{equation*}
\]
which can be written in finite-difference form as
\[
\begin{equation*}
\frac{k_{i, j}\left(3 T_{i, j+1}^{\prime}-6 T_{i, j}^{\prime}+3 T_{i, j-1}^{\prime}\right)}{(\Delta r)^{2}}+q^{\prime \prime \prime}=\rho C_{p}\left(\frac{T_{i, j}^{\prime}-T_{i, j}}{\Delta t}\right) \tag{19}
\end{equation*}
\]

Employing equation (5) yields
\[
\begin{equation*}
T_{i, j+1}=T_{i, j-1} \tag{20}
\end{equation*}
\]

Then, equation (19) can be written as
\[
\begin{equation*}
-\left[\frac{6 k_{i, j}}{(\Delta r)^{2}}+\frac{\rho C_{p}}{\Delta t}\right] T_{i, j}^{\prime}+\frac{6 k_{i, j}}{(\Delta r)^{2}} T_{i, j+1}^{\prime}=-q^{\prime \prime \prime}-\frac{\rho C_{p}}{\Delta t} T_{i, j} \tag{21}
\end{equation*}
\]
\[
\begin{equation*}
c_{i, J} T_{i, j}^{\prime}+E_{i, j} T_{i, j+1}^{\prime}=Q_{i, j} \tag{22}
\end{equation*}
\]
where
\[
\begin{align*}
A_{0, j} & \equiv B_{0, \jmath} \\
& \equiv D_{0, j} \\
& =0 \tag{23a}
\end{align*}
\]
and
\[
\begin{align*}
& c_{0, j}=-\left[\frac{6 k_{0, j}}{(\Delta r)^{2}}+\frac{\rho C_{p}}{\Delta t}\right] \tag{23b}\\
& E_{0, j}=\frac{6 k_{0, j}}{(\Delta r)^{2}} \tag{23c}\\
& Q_{0, j}=-\frac{\rho C_{p}}{\Delta t} T_{i, j}-q_{0, j}^{\prime \prime,} \tag{23d}
\end{align*}
\]

HOLLOW-SPHERE APPROXIMATION

This approximation assumes that a small but finite radius (\(r_{0}\)) can be used to represent the geometrical center. To illustrate this boundary condition, consider the location
\[
r=r_{0}\left(r_{0}=0.01 \Delta r\right), \quad \phi=0
\]

By employing the boundary conditions represented by equation (8c) and
\[
\left.\frac{\partial T}{\partial r}\right|_{r=r_{0}}=0
\]
equation (3) becomes
\[
\begin{equation*}
k \frac{\partial^{2} T}{\partial r^{2}}+\frac{2 k}{r_{0}} \frac{\partial^{2} T}{\partial \phi^{2}}+q^{\prime \prime \prime}=\rho C_{p} \frac{\partial T}{\partial t} \tag{24}
\end{equation*}
\]

With the assumptions that at
\[
\begin{align*}
& \phi=0, \quad T_{i-1, j}^{\prime}=T_{i+1, j}^{\prime} \tag{25a}\\
& r=r_{0}, \quad T_{i, j-1}^{\prime}=T_{i, j+1}^{\prime} \tag{25b}
\end{align*}
\]
equat on (24) can be formulated in terms of equation (11) as
\[
\begin{equation*}
C_{0, r_{0}} T_{i, j}^{\prime}+D_{0, r_{\circ}} T_{i+1, \jmath}^{\prime}+E_{0, r_{\circ}} T_{i, j+1}^{\prime}=Q_{0, r_{0}} \tag{26}
\end{equation*}
\]
where
\[
\begin{align*}
& C_{0, r_{o}}=-\left[\frac{2 \mathrm{k}_{0, r_{o}}}{(\Delta r)^{2}}+\frac{4 \mathrm{k}_{0, r_{o}}}{\left(r_{\circ} \Delta \phi\right)^{2}}+\frac{\rho C_{p}}{\Delta t}\right] \tag{27a}\\
& D_{0, r_{o}}=\frac{4 \mathrm{k}_{0, r_{o}}}{\left(r_{\circ} \frac{\Delta \phi)^{2}}{}\right.} \tag{27b}\\
& E_{0, r_{o}}=\frac{2 \mathrm{k}_{0, r_{o}}}{\left(\Delta r^{2}\right.} \tag{27c}\\
& Q_{0, r_{o}}=-\frac{\rho C_{p}}{\Delta t} T_{0, r_{\circ}}-q_{0, r_{o}^{\prime \prime}} \tag{27d}
\end{align*}
\]```

[^0]: *For sale by the 'Jationa' Technical Information Service, Springfield, Virginia 22151

[^1]: $I_{\text {This }}$ assumption of $\partial T / \partial r=0, r=0$, for all ϕ values will be discussed in a subsequent section of this report.

