629 research outputs found

    Uniform current in graphene strip with zigzag edges

    Full text link
    Graphene exhibits zero-gap massless-Dirac fermion and zero density of states at E = 0. These particles form localized states called edge states on finite width strip with zigzag edges at E = 0. Naively thinking, one may expect that current is also concentrated at the edge, but Zarbo and Nikolic numerically obtained a result that the current density shows maximum at the center of the strip. We derive a rigorous relation for the current density, and clarify the reason why the current density of edge state has a maximum at the center.Comment: 5 pages, 3 figures; added references and corrected typos, to be published in J. Phys. Soc. Jpn. Vol.78 No.

    Sequence analysis of a microsatellite and its flanking regions in intraspecific hybrids of grapevine (Vitis vinifera L.)

    Get PDF
    Microsatellite (MS) VVMD21 (BOWERS et al. 1999) was taken as a model to explore the molecular basis of polymorphism in a panel of 6 grapevine accessions (Vitis vinifera L.), consisting of Sangiovese and Cabernet Sauvignon and 4 F1 plants derived from crossing both varieties. The 12 alleles of both parents and the progeny were cloned and sequenced. The microsatellite repeat (AG)n>6 was found in each sequence, together with a poly-T rich region that showed irregularity. Furthermore, single nucleotide deletion or exchange (point mutations) were found in the microsatellite flanking regions

    An extracellular transglutaminase is required for apple pollen tube growth

    Get PDF
    An extracellular form of the calcium-dependent protein-crosslinking enzyme TGase (transglutaminase) was demonstrated to be involved in the apical growth of Malus domestica pollen tube. Apple pollen TGase and its substrates were co-localized within aggregates on the pollen tube surface, as determined by indirect immunofluorescence staining and the in situ cross-linking of fluorescently labelled substrates. TGase-specific inhibitors and an anti-TGase monoclonal antibody blocked pollen tube growth, whereas incorporation of a recombinant fluorescent mammalian TGase substrate (histidine-tagged green fluorescent protein:His6– Xpr–GFP) into the growing tube wall enhanced tube length and germination, consistent with a role of TGase as a modulator of cell wall building and strengthening. The secreted pollen TGase catalysed the cross-linking of both PAs (polyamines) into proteins (released by the pollen tube) and His6-Xpr-GFP into endogenous or exogenously added substrates. A similar distribution of TGase activitywas observed in planta on pollen tubes germinating inside the style, consistent with a possible additional role for TGase in the interaction between the pollen tube and the style during fertilization

    Quenching of the quantum Hall effect in graphene with scrolled edges

    Full text link
    Edge nanoscrolls are shown to strongly influence transport properties of suspended graphene in the quantum Hall regime. The relatively long arc length of the scrolls in combination with their compact transverse size results in formation of many nonchiral transport channels in the scrolls. They short-circuit the bulk current paths and inhibit the observation of the quantized two-terminal resistance. Unlike competing theoretical proposals, this mechanism of disrupting the Hall quantization in suspended graphene is not caused by ill-chosen placement of the contacts, singular elastic strains, or a small sample size

    Conductance of graphene nanoribbon junctions and the tight binding model

    Get PDF
    Planar carbon-based electronic devices, including metal/semiconductor junctions, transistors and interconnects, can now be formed from patterned sheets of graphene. Most simulations of charge transport within graphene-based electronic devices assume an energy band structure based on a nearest-neighbour tight binding analysis. In this paper, the energy band structure and conductance of graphene nanoribbons and metal/semiconductor junctions are obtained using a third nearest-neighbour tight binding analysis in conjunction with an efficient nonequilibrium Green’s function formalism. We find significant differences in both the energy band structure and conductance obtained with the two approximations
    corecore