73 research outputs found

    Bone marrow mesenchymal stem cells for improving hematopoietic function: An in vitro and in vivo model. Part 2: Effect on bone marrow microenvironment

    Get PDF
    9 páginas, 4 figuras, 1 tabla.-- This is an open-access article distributed under the terms of the Creative Commons Attribution License.-- et al.The aim of the present study was to determine how mesenchymal stem cells (MSC) could improve bone marrow (BM) stroma function after damage, both in vitro and in vivo. Human MSC from 20 healthy donors were isolated and expanded. Mobilized selected CD34+ progenitor cells were obtained from 20 HSCT donors. For in vitro study, long-term bone marrow cultures (LTBMC) were performed using a etoposide damaged stromal model to test MSC effect in stromal confluence, capability of MSC to lodge in stromal layer as well as some molecules (SDF1, osteopontin,) involved in hematopoietic niche maintenance were analyzed. For the in vivo model, 64 NOD/SCID recipients were transplanted with CD34+ cells administered either by intravenous (IV) or intrabone (IB) route, with or without BM derived MSC. MSC lodgement within the BM niche was assessed by FISH analysis and the expression of SDF1 and osteopontin by immunohistochemistry. In vivo study showed that when the stromal damage was severe, TP-MSC could lodge in the etoposide-treated BM stroma, as shown by FISH analysis. Osteopontin and SDF1 were differently expressed in damaged stroma and their expression restored after TP-MSC addition. Human in vivo MSC lodgement was observed within BM niche by FISH, but MSC only were detected and not in the contralateral femurs. Human MSC were located around blood vessels in the subendoestal region of femurs and expressed SDF1 and osteopontin. In summary, our data show that MSC can restore BM stromal function and also engraft when a higher stromal damage was done. Interestingly, MSC were detected locally where they were administered but not in the contralateral femur. © 2011 Carrancio et al.This study was supported in part by a grant from Consejeria de Educación de Castilla y León (ref: HUS003A10-2), Gerencia Regional de Salud de Castilla y León (ref: GRS/222/A/08) and Fondo de Investigaciones Sanitarias (ISCIII) (ref: PS09/01530), Ministerio de Sanidad, Spain. S.C. was supported by Junta de Castilla y Leon (FPI Grant EDU/1878/2006). B.B. was supported by Fondo de Investigaciones Sanitarias (FIS) from the Instituto de Salud Carlos III (ref. CD06/00042).Peer Reviewe

    Effects of MSC coadministration and route of delivery on cord blood hematopoietic stem cell engraftment

    Get PDF
    Licencia Creative Commons Reconocimiento-No comercial.-- et al.Hematopoietic stem cell transplantation (HSCT) using umbilical cord blood (UCB) progenitors is increasingly being used. One of the problems that may arise after UCB transplantation is an impaired engraftment. Either intrabone (IB) injection of hematopoietic progenitors or mesenchymal stem cell (MSC) coadministration has been proposed among the strategies to improve engraftment. In the current study, we have assessed the effects of both approaches. Thus, NOD/SCID recipients were transplanted with human UCB CD34+ cells administered either intravenously (IV) or IB, receiving or not bone marrow (BM)-derived MSCs also IV or IB (in the right femur). Human HSC engraftment was measured 3 and 6 weeks after transplantation. Injected MSCs were tracked weekly by bioluminescence. Also, lodgment within the BM niche was assessed at the latter time point by immunofluorescence. Our study shows regarding HSC engraftment that the number of BM human CD45+ cells detected 3 weeks after transplantation was significantly higher in mice cotransplanted with human MSCs. Moreover, these mice had a higher myeloid (CD13+) engraftment and a faster B-cell (CD19+) chimerism. At the late time point evaluated (6 weeks), human engraftment was higher in the group in which both strategies were employed (IB injection of HSC and MSC coadministration). When assessing human MSC administration route, we were able to track MSCs only in the injected femurs, whereas they lost their signal in the contralateral bones. These human MSCs were mainly located around blood vessels in the subendosteal region. In summary, our study shows that MSC coadministration can enhance HSC engraftment in our xenogenic transplantation model, as well as IB administration of the CD34+ cells does. The combination of both strategies seems to be synergistic. Interestingly, MSCs were detected only where they were IB injected contributing to the vascular niche.This study was supported in part by a grant from Gerencia Regional de Salud de Castilla y León (ref. GRS/222/A/08) and by a grant from Consejería de Educación de la Junta de Castilla y León (ref. HUS003A10-2). S.C. was supported by Junta de Castilla y Leon (FPI grant EDU/1878/2006).Peer Reviewe

    Risk factors for thrombotic microangiopathy in allogeneic hematopoietic stem cell recipients receiving GVHD prophylaxis with tacrolimus plus MTX or sirolimus

    Get PDF
    Post-transplant complications.-- et al.Transplantation-associated thrombotic microangiopathy (TA-TMA) is a feared complication of allogeneic hematopoietic SCT (HSCT) owing to its high mortality rate. The use of calcineurin inhibitors or sirolimus (SIR) for GVHD prophylaxis has been suggested as a potential risk factor. However, the impact of tacrolimus (TAC) and SIR combinations on the increased risk of TA-TMA is currently not well defined. We retrospectively analyzed the incidence of TA-TMA in 102 allogeneic HSCT recipients who consecutively received TAC plus SIR (TAC/SIR) (n=68) or plus MTX (TAC/MTX)±ATG (n=34) for GVHD prophylaxis. No significant differences were observed in the incidence of TA-TMA between patients receiving TAC/SIR vs TAC/MTX±ATG (7.4% vs 8.8%, P=0.8). Only grade III-IV acute GVHD, previous HSCT and serum levels of TAC >25 ng/mL were associated with a greater risk of TA-TMA. Patients developing TA-TMA have significantly poorer survival (P<0.001); however, TA-TMA ceased to be an independent prognostic factor when it was included in a multivariate model. In conclusion, the combination of TAC/SIR does not appear to pose a higher risk of TA-TMA. By contrast, we identified three different risk groups for developing TA-TMA.Peer Reviewe

    Analysis of incidence, risk factors and clinical outcome of thromboembolic and bleeding events in 431 allogeneic hematopoietic stem cell transplantation recipients

    Get PDF
    This is an open-access paper.-- et al.Allogeneic hematopoietic stem cell transplantation recipients have an increasing risk of both hemorrhagic and thrombotic complications. However, the competing risks of two of these life-threatening complications in these complex patients have still not been well defined. We retrospectively analyzed data from 431 allogeneic transplantation recipients to identify the incidence, risk factors and mortality due to thrombosis and bleeding. Significant clinical bleeding was more frequent than symptomatic thrombosis. The cumulative incidence of a bleeding episode was 30.2% at 14 years. The cumulative incidence of a venous or arterial thrombosis at 14 years was 11.8% and 4.1%, respectively. The analysis of competing factors for venous thrombosis revealed extensive chronic graft-versus-host disease to be the only independent prognostic risk factor. By contrast, six factors were associated with an increased risk of bleeding; advanced disease, ablative conditioning regimen, umbilical cord blood transplantation, anticoagulation, acute III-IV graft-versus-host disease, and transplant-associated microangiopathy. The development of thrombosis did not significantly affect overall survival (P=0.856). However, significant clinical bleeding was associated with inferior survival (P<0.001). In allogeneic hematopoietic stem cell transplantation, significant clinical bleeding is more common than thrombotic complications and affects survival.Peer Reviewe

    Historia de la RAMSA. 50º aniversario (1971-2021)

    Get PDF
    Libro conmemorativo de los 50 años de existencia de la Real Academia de Medicina de Salamanca, donde se recogen todas las actividades llevadas a cabo durante ese tiempo, los premios concedidos, los miembros elegidos, etc., así como se gestó su nacimiento en el contexto de la existencia de otras academias médicas.Universidad de Salamanc

    Bone Marrow Mesenchymal Stem Cells for Improving Hematopoietic Function: An In Vitro and In Vivo Model. Part 2: Effect on Bone Marrow Microenvironment

    Get PDF
    The aim of the present study was to determine how mesenchymal stem cells (MSC) could improve bone marrow (BM) stroma function after damage, both in vitro and in vivo. Human MSC from 20 healthy donors were isolated and expanded. Mobilized selected CD34+ progenitor cells were obtained from 20 HSCT donors. For in vitro study, long-term bone marrow cultures (LTBMC) were performed using a etoposide damaged stromal model to test MSC effect in stromal confluence, capability of MSC to lodge in stromal layer as well as some molecules (SDF1, osteopontin,) involved in hematopoietic niche maintenance were analyzed. For the in vivo model, 64 NOD/SCID recipients were transplanted with CD34+ cells administered either by intravenous (IV) or intrabone (IB) route, with or without BM derived MSC. MSC lodgement within the BM niche was assessed by FISH analysis and the expression of SDF1 and osteopontin by immunohistochemistry. In vivo study showed that when the stromal damage was severe, TP-MSC could lodge in the etoposide-treated BM stroma, as shown by FISH analysis. Osteopontin and SDF1 were differently expressed in damaged stroma and their expression restored after TP-MSC addition. Human in vivo MSC lodgement was observed within BM niche by FISH, but MSC only were detected and not in the contralateral femurs. Human MSC were located around blood vessels in the subendoestal region of femurs and expressed SDF1 and osteopontin. In summary, our data show that MSC can restore BM stromal function and also engraft when a higher stromal damage was done. Interestingly, MSC were detected locally where they were administered but not in the contralateral femur

    Targeting of PI3K/AKT/mTOR pathway to inhibit T cell activation and prevent graft-versus-host disease development

    Get PDF
    Producción CientíficaBackground: Graft-versus-host disease (GvHD) remains the major obstacle to successful allogeneic hematopoietic stem cell transplantation, despite of the immunosuppressive regimens administered to control T cell alloreactivity. PI3K/AKT/mTOR pathway is crucial in T cell activation and function and, therefore, represents an attractive therapeutic target to prevent GvHD development. Recently, numerous PI3K inhibitors have been developed for cancer therapy. However, few studies have explored their immunosuppressive effect. Methods: The effects of a selective PI3K inhibitor (BKM120) and a dual PI3K/mTOR inhibitor (BEZ235) on human T cell proliferation, expression of activation-related molecules, and phosphorylation of PI3K/AKT/mTOR pathway proteins were analyzed. Besides, the ability of BEZ235 to prevent GvHD development in mice was evaluated. Results: Simultaneous inhibition of PI3K and mTOR was efficient at lower concentrations than PI3K specific targeting. Importantly, BEZ235 prevented naïve T cell activation and induced tolerance of alloreactive T cells, while maintaining an adequate response against cytomegalovirus, more efficiently than BKM120. Finally, BEZ235 treatment significantly improved the survival and decreased the GvHD development in mice. Conclusions: These results support the use of PI3K inhibitors to control T cell responses and show the potential utility of the dual PI3K/mTOR inhibitor BEZ235 in GvHD prophylaxis.Asociación Española Contra el Cáncer (Proyecto AIOA110296BLAN).Gerencia Regional de Salud de Castilla y León (Proyecto GRS 726/A13

    Prognostic impact of the number of methylated genes in myelodysplastic syndromes and acute myeloid leukemias treated with azacytidine

    No full text
    The prognostic impact of the aberrant hypermethylation in response to azacytidine (AZA) remains to be determined. Therefore, we have analyzed the influence of the methylation status prior to AZA treatment on the overall survival and clinical response of myeloid malignancies. DNA methylation status of 24 tumor suppressor genes was analyzed by methylation-specific multiplex ligation-dependent probe amplification in 63 patients with myelodysplastic syndromes and acute myeloid leukemia treated with azacytidine. Most patients (73 %) showed methylation of at least one gene, but only 12 % of patients displayed ≥3 methylated genes. The multivariate analysis demonstrated that the presence of a high number (≥2) of methylated genes (P = 0.022), a high WBC count (P = 0.033), or anemia (P = 0.029) were independent prognostic factors associated with shorter overall survival. The aberrant methylation status did not correlate with the response to AZA, although four of the five patients with ≥3 methylated genes did not respond. By contrast, favorable cytogenetics independently influenced the clinical response to AZA as 64.7 % of patients with good-risk cytogenetic abnormalities responded (P = 0.03). Aberrant methylation status influences the survival of patients treated with AZA, being shorter in those patients with a high number of methylated genes.This work was partially supported by a grant (RD12/0036/0069) from Red Temática de Investigación Cooperativa en Cáncer (RTICC), Instituto de Salud Carlos III (ISCIII), Spanish Ministry of Economy and Competitiveness & European Regional Development Fund (ERDF) “Una manera de hacer Europa”, and by grants from the Spanish Fondo de Investigaciones Sanitarias (FIS) [12/000281], Sanidad de Castilla y León (SACYL) [106/A/06, 355/A/09], Fundación Memoria de D. Samuel Solórzano Barruso, COST actionEuGESMA [BM0801], and Celgene Corporation, Spain. MA is fully supported by the Spanish Consejo Superior de Investigaciones Científicas-Junta para la Ampliación de Estudios (CSIC, JAE Predoctoral) [09–02402].Peer Reviewe
    corecore