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Abstract

Background: Graft-versus-host disease (GvHD) remains the major obstacle to successful allogeneic hematopoietic
stem cell transplantation, despite of the immunosuppressive regimens administered to control T cell alloreactivity.
PI3K/AKT/mTOR pathway is crucial in T cell activation and function and, therefore, represents an attractive
therapeutic target to prevent GvHD development. Recently, numerous PI3K inhibitors have been developed
for cancer therapy. However, few studies have explored their immunosuppressive effect.

Methods: The effects of a selective PI3K inhibitor (BKM120) and a dual PI3K/mTOR inhibitor (BEZ235) on human T cell
proliferation, expression of activation-related molecules, and phosphorylation of PI3K/AKT/mTOR pathway proteins
were analyzed. Besides, the ability of BEZ235 to prevent GvHD development in mice was evaluated.

Results: Simultaneous inhibition of PI3K and mTOR was efficient at lower concentrations than PI3K specific targeting.
Importantly, BEZ235 prevented naïve T cell activation and induced tolerance of alloreactive T cells, while maintaining
an adequate response against cytomegalovirus, more efficiently than BKM120. Finally, BEZ235 treatment significantly
improved the survival and decreased the GvHD development in mice.

Conclusions: These results support the use of PI3K inhibitors to control T cell responses and show the potential utility
of the dual PI3K/mTOR inhibitor BEZ235 in GvHD prophylaxis.
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Background
Allogeneic hematopoietic stem cell transplantation
(allo-HSCT) remains the only curative option for
many hematologic malignancies. Unfortunately, a serious
complication is frequently developed after allo-HSCT:
graft-versus-host disease (GvHD). GvHD occurs when
donor T lymphocytes recognize as foreign and destroy
patient’s healthy tissues. Despite the immunosuppressive
regimens administered, GvHD remains the major cause of

morbidity and mortality after allo-HSCT. Thus, new
therapeutic strategies are needed.
One of the key signaling pathways involved in T cell

activation and function is phosphatidylinositol 3-kinase/
AKT/mammalian target of rapamycin (PI3K/AKT/
mTOR) [1]. This pathway controls numerous cellular
processes, including proliferation, survival, migration,
and metabolism [2]. In particular, PI3K activation in T
cells promotes survival [3] and cell cycle progression [4],
modulates differentiation [5, 6], and controls the acquisi-
tion of effector and memory phenotypes [7]. Thus, in-
hibitors of PI3K/AKT/mTOR pathway can interfere with
T cell activation and function.
The use of PI3K/AKT/mTOR inhibitors has been

scantily explored in the allo-HSCT context. Only the
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utility of the mTORC1 inhibitor rapamycin (Sirolimus)
has been extensively studied, providing promising results
[8]. In addition, it has been suggested that the beneficial
effects observed in patients with chronic GvHD treated
with tyrosine kinase inhibitors could be due, in part, to
their ability to inhibit PI3K signaling in T cells [9]. How-
ever, few studies have evaluated the immunosuppressive
effect of PI3K inhibitors on T lymphocytes [10–12] and
their ability to prevent GvHD development [13, 14].
Herein, we have analyzed the effects of two novel antitu-
mor drugs, the pan-class I PI3K inhibitor BKM120 and
the dual PI3K/mTOR inhibitor BEZ235, on T cell activa-
tion and evaluated the utility of BEZ235 in a murine
model of GvHD.

Methods
Drugs
BEZ235 was kindly provided by Novartis Pharma (Basel,
Switzerland). BKM120 was purchased from Selleck
Chemicals (Houston, TX, USA). For in vitro studies,
BKM120 and BEZ235 were reconstituted in DMSO at
10 mM and stored frozen at −20 °C until use. For in
vivo assays, BEZ235 solution was prepared fresh
before administration. In brief, BEZ235 was dissolved in
one volume of N-methyl-2-pyrrolidone (Sigma-Aldrich,
St. Louis, MO) and then nine volumes of polyethylene
glycol 300 (Sigma-Aldrich) were added. The application
volume was 10 ml/kg body weight.

Cell isolation and culture
Peripheral blood mononuclear cells (PBMCs) were iso-
lated from buffy coats of volunteer healthy donors by
density gradient centrifugation using Ficoll–Paque solu-
tion (GE Healthcare Bio-Sciences, Uppsala, Sweden). Buffy
coats were provided by the Centro de Hemoterapia y
Hemodonación de Castilla y León, after written informed
consent obtention. The research was approved by the
Clinical Research Ethics Committee (CEIC) of “Area de
Salud de Salamanca” (2012/11/132).
For Western blot analysis, PBMCs were allowed to ad-

here to tissue culture flasks (Corning, NY, USA) O/N at
37 °C and thereafter, non-adherent cells (T cell-enriched
PBMCs) were collected. For cell cycle, apoptosis, and
cytokine secretion assays, T cells were isolated from
PBMCs by immunomagnetic selection, using the Pan T
Cell Isolation Kit (Miltenyi Biotec, Bergisch Gladbach,
Germany). The purity of isolated populations was rou-
tinely >95 %.
PBMCs or isolated T cells were cultured in well plates

(Greiner Bio-One, Frickenhausen, Germany) at a density
of 1 × 106 cells/ml in RPMI 1640 medium supplemented
with 2 mM L-glutamine, 100 U/ml penicillin, 100 μg/ml
streptomycin (all from Gibco-Invitrogen, Paisely, UK),
and 10 % human AB serum (Sigma-Aldrich). Cells were

stimulated or not with plate-bound anti-CD3 (5 μg/ml)
and soluble anti-CD28 (2.5 μg/ml) monoclonal anti-
bodies (mAbs) (BD Biosciences, San Jose, CA, USA)
and treated with different doses of BKM120 or
BEZ235 (0–10 μM).

Western blot analysis
Unstimulated or stimulated T cell-enriched PBMCs were
treated with different concentrations of BKM120 or
BEZ235. After 48 h, cells were lysed and cell extracts
were electrophoresed, transferred onto PVDF membrane
(Millipore, Bedford, MA, USA), and immunoblotted
with antibodies against caspase 3, phosphorylated AKT
(p-AKT) (T308 and S473), total AKT, phosphorylated
4E-BP1 (p-4E-BP1) (T37/46), total 4E-BP1, phosphory-
lated RPS6 (p-RPS6) (S235/236), total RPS6, phosphory-
lated p38 MAPK (p-p38) (T180/Y182), total p38 MAPK,
phosphorylated ERK1/2 (p-ERK1/2) (T202/Y204) (all
from Cell Signaling Thechnology®, Leiden, Netherlands),
or total ERK2 (Santa Cruz Biotechnology, Heidelberg,
Germany); antibodies to GAPDH (Cell Signaling Thech-
nology®) and calnexin (Enzo® Life Science, Plymouth
Meeting, PA, USA) were used as loading controls. Anti-
rabbit or anti-mouse antibodies conjugated to horserad-
ish peroxidase (GE Healthcare, Buckinghamshire, UK)
were used as secondary antibodies. Proteins were visual-
ized with an ECL detection system (GE Healthcare).

Proliferation assays
PBMCs were stained with PKH-67 green fluorescent
dye (Sigma-Aldrich) following manufacturer’s instruc-
tions. Thereafter, PKH-stained cells were seeded in
the absence or in the presence of anti-CD3/anti-CD28
mAbs as described above and treated with different
concentrations of the drugs. After 5 days, cells were
stained with 7-amino-actinomycin D (7AAD) and
anti-CD3-APC and acquired in a FACSCalibur flow
cytometer (all from BD Biosciences). Percentage of
proliferating T cells (CD3+PKHlow) was calculated using
the Infinicyt software (Cytognos, Salamanca, Spain).

Cell cycle analysis
Unstimulated or anti-CD3/anti-CD28 stimulated isolated
T cells were cultured in the presence of different concen-
trations of BKM120 or BEZ235. After 4 days, cells were
stained with propidium iodide, using the CycleTEST™
PLUS DNA Reagent Kit (BD Biosciences) and acquired on
a FACSCalibur flow cytometer. The distribution of cells
along the cell cycle phases was analyzed using ModFit LT™
Macintosh program (Verity Software House, Topsham,
ME, USA).
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Apoptosis assessment
Unstimulated or anti-CD3/anti-CD28 stimulated isolated
T cells were cultured in the presence of different concen-
trations of the compounds. After 2 days, cells were stained
with Annexin V-PE (BD Pharmingen™, San Diego, USA).
Samples were acquired on a FACSCalibur flow cytometer
and analyzed using the Infinicyt software.

Cytokine assays
Isolated T cells were stimulated with anti-CD3/anti-
CD28 mAbs in the presence of several concentrations of
BKM120 or BEZ235. After 48 h, concentration of differ-
ent cytokines in culture supernatants was analyzed on a
FACSCalibur flow cytometer using the Human Th1/Th2
Cytokine Cytometric Bead Array (CBA) kit and BD CBA
software (all from BD Biosciences).

Immunophenotypic analysis
Unstimulated or anti-CD3/anti-CD28 stimulated PBMCs
were treated with different concentrations of BKM120
or BEZ235. After 48 h, cells were stained with the
following combination of mAbs: anti-CD45RA-FITC/
anti-IFN-γ-PE/anti-CD8-PerCP-Cy5.5/anti-CD25-PE-Cy7/
anti-Granzyme B-Alexa Fluor® 647/anti-CD4-APC-Alexa
Fluor® 750/anti-CD27-Brillant Violet 421/anti-CD3-Brillant
Violet 510. For intracellular staining of IFN-γ and gran-
zyme B, brefeldin A (10 μg/ml) (Sigma-Aldrich) was added
for the last 4 h prior to acquisition and the IntraStain Kit
(Dako Cytomation, Denmark) was used. Acquisition was
performed on a FACSCanto flow cytometer (BD) and ana-
lyzed using the Infinicyt software.

Enzyme-linked immunospot (ELISPOT) assays
PBMCs from cytomegalovirus (CMV)-positive donors
(responder cells) were stimulated with irradiated (25 Gy)
PBMCs from a second donor (allogeneic cells) in a 2:1
ratio. Different doses of BKM120 or BEZ235 were added.
After 96 h, responder cells were collected and cultured,
in the absence of drugs, in an IFN-γ ELISpot plate
(Mabtech, Nacka Strand, Sweeden): (a) in the absence of
stimulation (control), (b) re-stimulated with allogeneic
cells from the same donor of the primary culture, or (c)
re-stimulated with CMV-pp65 recombinant protein
(Miltenyi Biotec). After 36 h, ELISPOT was performed
following manufacturer’s instructions. Spots correspond-
ing to IFN-γ secreting cells were quantified using an
Immunospot ELISPOT reader (CTL, Aale, Germany).
The percentage of IFN-γ secreting cells was determined
by subtracting, from the number of spots counted in
allogeneic or CMV-pp65 re-stimulated wells, the back-
ground spots in the corresponding unstimulated (control)
wells. These values were normalized with respect to those
obtained from the samples pre-stimulated in the absence

of drugs (0 μM) and re-stimulated with allogeneic cells or
CMV-pp65, respectively, considered as 100 %.

GvHD murine model
Female recipient Balb/c (H2d) and male donor C57BL/6
(H2b) mice (12 weeks old) were purchased from Harlan
Laboratory (Carshalton, UK). Animal experiments
were approved by the ethical committee of Salamanca
University (N°201300004045).
Balb/c mice received total body irradiation (8.5 Gy in

two fractions) from a Cs137 source and then an intra-
venous injection of 10 × 106 C57BL/6 bone marrow cells
without (BM group) or with 5 × 106 splenocytes. Mice
receiving splenocytes were either untreated (GvHD
group) or treated orally with BEZ235 (GvHD + BEZ235
group) once a day, from day +1 to day +60 post-
transplantation. Different concentrations of BEZ235
(5–50 mg/kg/day) were tested and, finally, the best
results were observed at a dose of 5 mg/kg/day.
Four experiments were performed with at least two

mice per group. A control mouse receiving irradiation
without stem cell support (Total Body Irradiation, TBI
group) was also included in each experiment.
Balb/c mice were monitored daily for survival and for

the following clinical signs of GvHD: weight loss, pos-
ture (hunching), activity, fur texture and skin integrity.
Each parameter received a score of 0 (normal), 1 (mild
to moderate), or 2 (severe) and a clinical GvHD index
was generated subsequently by summation of the five
criteria scores (maximum index = 10), as previously de-
scribed [15]. All moribund mice were humanely killed.
For histopathological analysis of GvHD target organs

(large intestine, skin and liver), at least one animal of each
group was killed in the third week post-transplantation
and once treatment was completed. Tissues were fixed
in 10 % neutral-buffered formalin (Sigma-Aldrich),
embedded in paraffin, and sectioned and stained with
hematoxylin and eosin (both from Merck KGaA,
Darmstadt, Germany). Slides were examined under a
BX41 light microscope and images were captured
using a DP50 digital camera and the software Cell^A
2.6 (all from Olympus Optical Co. Ltd., Tokyo, Japan).
Details of the scoring system are summarized in Table 1.

Statistical analysis
Most statistical analyses were performed using IBM
SPSS Statistics 20 (Chicago, IL, USA). Differences be-
tween the effects of different doses of a drug and be-
tween both drugs were analyzed by the Kruskal–Wallis
multiple-comparison Z value test. Pairwise comparisons
were performed using the Mann–Whitney test with
Bonferroni correction. Survival curves were plotted
using Kaplan–Meier estimates and a log-rank test was
used to compare survival rates.
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For statistical analysis of weight variation and clinical
scores, curves of each mouse along time from trans-
plantation were fitted by cubic splines using the program
“Compare” in the SIMFIT statistical package (http://sim-
fit.org.uk), applying unweighted least square fitting.
Areas under the curve (AUCs) from the replicate curves
of mice in each group were compared by a one-way
ANOVA followed by the Tukey’s post hoc test.
Statistical significance in all tests was concluded for

values of p < 0.05.

Results
Effect of BKM120 and BEZ235 on PI3K/AKT/mTOR pathway
First, the effect of BKM120 and BEZ235 on the phos-
phorylation of PI3K/AKT/mTOR pathway proteins in
stimulated T cells was assessed (Fig. 1). BKM120
effectively reduced AKT phosphorylation at T308 at
all the tested doses, and so did BEZ235, although
with less efficacy. The treatment with both inhibitors
also reduced AKT-S473 phosphorylation, observing a
complete abrogation at 1 μM for BEZ235 and 10 μM
for BKM120.
The amount of phosphorylated 4E-BP1 and RPS6

proteins was also diminished in the presence of both
drugs. However, while this decrease was clear only at
the highest concentration of BKM120 (10 μM), the
lowest dose of BEZ235 (0.5 μM) was sufficient to
completely abolish the presence of the phosphorylated
forms of 4E-BP1 and RPS6. Of note, this complete
abrogation was accompanied by the strong reduction
in RPS6 and 4E-BP1 expression.
As 4E-BP1 expression can be negatively regulated by

the mitogen-activated protein kinases (MAPKs) ERK
and p38 [16], their phosphorylation was assessed. Both
drugs reduced ERK1/2 phosphorylation on stimulated
T cells. However, BKM120 (10 μM) and, especially,
BEZ235 (0.5–10 μM) increased p38 phosphorylation,
correlating with the reduction in RPS6 and 4E-BP1 ex-
pression (Fig. 1).

Effect of BKM120 and BEZ235 on T cell proliferation and
apoptosis induction
Thereafter, we assessed the effect of both inhibitors on
stimulated T cell proliferation. The percentage of prolif-
erating T cells significantly decreased at high concentra-
tions of both drugs, although at low doses BEZ235 was
much more effective than BKM120 (Fig. 2a).
Next, we investigated whether this reduction in prolif-

eration was related to cell cycle arrest, to an increase in
apoptosis or to both. The percentage of cells in synthesis
and G2/mitosis phases significantly decreased among
stimulated T cells in the presence of both inhibitors, al-
though, at low doses, BEZ235 was more efficient than
BKM120 (Fig. 2b).
Regarding apoptosis, the addition of inhibitors did not

significantly change the percentage of annexin V+ cells,
neither among unstimulated nor among stimulated T
cells (Fig. 2c, d). However, the amount of cleaved cas-
pase 3 in stimulated cells decreased in the presence of
BEZ235 and at high concentrations of BKM120 (Fig. 2e).

Effect of BKM120 and BEZ235 on T cell cytokine secretion
Both inhibitors induced, in general, a dose-dependent
decrease in Th1/Th2 cytokine secretion. The effect of
BEZ235 was greater than that of BKM120 at low/inter-
mediate doses (Fig. 3). As an exception, and despite an
initial dose-dependent decrease, IL-2 concentration
started a tendency to recover the levels of stimulated un-
treated cells at BEZ235 concentrations ≥1 μM.

Effect of BKM120 and BEZ235 on stimulated T cell
phenotype
Another interesting point was to evaluate whether the
inhibitors impaired the expression of T cell activation
markers. For this purpose, cell surface expression of CD25
and intracellular expression of IFN-γ and granzyme B were
analyzed on CD4+ and CD8+ stimulated T cells.
In both populations, increasing doses of the inhibitors

induced a clear trend toward a decrease in the percentage
of IFN-γ+ and granzyme B+ cells (Fig. 4a, b). However,

Table 1 Histologic criteria for GvHD score

Score Skin Liver Large intestine

0 Normal Normal Normal

0.5 Focal mild portal lymphoid infiltrate Occasional or rare necrotic cells
in glands or crypts

1 Basal vacuolar change Widespread mild portal lymphoid
infiltrate

Isolated apoptotic epithelial cells,
without crypt loss

2 Dyskeratotic cells in the epidermis and/or
follicle, dermal lymphocytic infiltrate

Focal bile duct invasion or cellular
injury

Individual crypt loss. Regeneration
changes

3 Fusion of basilar vacuoles to form clefts
and microvesicles

Multiple foci of bile duct injury and
regeneration

Contiguous area of multiple
crypt loss

4 Separation of the epidermis from the dermis Widespread injury and destruction
of bile ducts

Extensive crypt dropout with
denudation of epithelium
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only the diminution of IFN-γ+ cells in BEZ235 (5–10 μM)
treated samples, both among CD4+ and CD8+ popula-
tions, was significant. Similar results were observed re-
garding the percentage of CD25+ cells among CD8+

population, being significantly reduced only in the
case of BEZ235 10 μM. On the contrary, the percent-
age of CD25+ cells among CD4+ population remained
elevated (Fig. 4c), although median fluorescence
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Fig. 1 Effect of BKM120 and BEZ235 on phosphorylation of PI3K/AKT/mTOR and MAPK pathway proteins. T cell-enriched PBMCs were stimulated
for 48 h with anti-CD3 and anti-CD28 mAbs in the presence of different concentrations of BKM120 or BEZ235. Analysis of phosphorylation and
expression of different proteins belonging to PI3K/AKT/mTOR and MAPKs pathways was performed. Western blot representative of at least three
independent experiments
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intensity (MFI) of CD25 was reduced with both inhib-
itors (Fig. 4d).
In addition, T cells were classified into different matur-

ation subsets based on the expression of CD27 and

CD45RA [17]: naïve (CD45RA+CD27+), early effector (TEE;
CD45RA+CD27high), central memory (TCM; CD45RA-

CD27+), effector memory (TEM; CD45RA
-CD27−), and ef-

fector/TEMRA (effector/terminally differentiated effector
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Fig. 2 Effect of BKM120 and BEZ235 on T cell proliferation and apoptosis induction. PBMCs (a) or isolated T cells (b) were stimulated and treated
with different concentrations of BKM120 or BEZ235. a Percentage of T cells that had undergone one or more cell divisions (CD3+PKHlow) after
5 days of culture. b Percentage of T cells in synthesis and G2/mitosis (S-G2/M) phases after 4 days of culture. #p < 0.05 with respect to untreated
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memory CD45RA+ cells; TE/T; CD45RA
+CD27−) T cells.

The effect of both inhibitors on the different T cell subsets
was analyzed.
Stimulation in the absence of treatment gave rise,

among both CD4+ and CD8+ T cells, to a population of
TEE cells, which was significantly reduced in the pres-
ence of BEZ235 (Fig. 5a). By contrast, stimulation in-
duced a non-significant decrease in the percentage of
naïve cells, which was reversed by the addition of the in-
hibitors (Fig. 5b).
The percentage of the other subpopulations hardly

changed in the presence of the drugs, except the per-
centage of TCM cells among CD4+ population, which
showed a trend to decrease with stimulation, and to re-
cover the value of unstimulated control when the drugs
were added (Additional file 1: Figure S1).
Regarding the percentage of CD25, IFN-γ and gran-

zyme B-positive cells in the different CD4+ and CD8+ T
cell maturation subsets, the drugs exerted, in general, a
similar effect to that observed in CD4+ and CD8+ whole

populations (Additional file 1: Figure S2 and S3). As
an exception, the percentage of granzyme B+ cells
among TE/T cells remained high in the presence of
the inhibitors, although the treatment induced a trend
to reduce the intensity of expression of this molecule.
Moreover, BEZ235 10 μM reduced it significantly
(Additional file 1: Figure S4).

Effect of BKM120 and BEZ235 on T cell tolerization
Next, we assessed whether the drugs were able to induce
anergy on alloreactive T cells without hampering the im-
mune response against pathogens. To address this ques-
tion, PBMCs were stimulated with allogeneic PBMCs in
the presence of BKM120 or BEZ235, and, subsequently,
with these allogeneic cells or with CMV-pp65 protein in
the absence of drugs.
As shown in Fig. 6, BKM120 (10 μM) and BEZ235

(1 μM) induced a non-significant decrease in IFN-γ re-
sponse to re-stimulation with allogeneic cells, while
maintaining a high percentage of IFN-γ secreting cells in

Fig. 3 Effect of BKM120 and BEZ235 on Th1/Th2 cytokine secretion. Concentration of IL-2, IFN-γ, TNF-α, IL-4, IL-10, and IL-6 in the culture super-
natant of isolated T cells stimulated in the presence of different concentrations of BKM120 or BEZ235. Concentration values corresponding to un-
stimulated untreated samples are also shown. Data represent the mean ± SEM of at least three independent experiments. #p < 0.05 with respect
to stimulated untreated samples (0 μM)
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response to re-stimulation with CMV-pp65 protein.
However, only BEZ235 10 μM induced a significant
decrease in IFN-γ secreting cells in response to allo-
geneic cells.

Effect of BEZ235 in a murine model of GvHD
Based on the results obtained in vitro, BEZ235 was se-
lected to evaluate its potential utility in GvHD prophy-
laxis in a murine model.
The administration of BEZ235 significantly in-

creased survival (p = 0.002) with respect to GvHD un-
treated mice (Fig. 7a). BEZ235 did not significantly
ameliorate the weight loss suffered as a consequence
of transplantation (Fig. 7b) but reduced the severity

of the other GvHD clinical signs evaluated (Fig. 7c).
Histopathological analysis of GvHD target organs was
performed at the third week post-transplantation and
once treatment was completed (>60 days). Damages
in the skin, large intestine, and liver were observed in
untreated mice at the third week, and the only mouse
that survived beyond day 60 also showed evident
GvHD signs in these organs. BEZ235 treatment mod-
estly reduced tissue damage by week 3; however, only
mild portal lymphoid infiltrate was observed in
BEZ235-treated mice that survived beyond day 60
post-transplantation. The score of GvHD-associated
tissue damage in the different groups is summarized
in Table 2.

Fig. 4 Effect of BKM120 and BEZ235 on expression of T cell activation markers. Percentage of IFN-γ+ (a), granzyme B+ (b), and CD25+ (c) cells
among CD4+ and CD8+ T cells, unstimulated or stimulated in the presence of different concentrations of BKM120 and BEZ235. Data represent the
mean + SD from five independent experiments. d MFI of CD25 expression was calculated from four independent experiments. #p < 0.05 with
respect to stimulated untreated samples (0 μM)
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Discussion
In the last decade, numerous class I PI3K inhibitors with
various profiles, such as pan-Class I PI3K, isoform-
specific PI3K or dual PI3K/mTOR inhibitors, have been
developed for clinical applications, especially in the field
of oncology. In the current study, we have evaluated the
ability of the pan-Class I PI3K inhibitor BKM120 and
the dual PI3K/mTOR inhibitor BEZ235 to block T cell
activation and shown for the first time the potential util-
ity of BEZ235 in the context of allo-HSCT.
Although largely demonstrated on tumor cells [18, 19],

the antiproliferative effect of these drugs on T cells had
been scantily evaluated [11, 20]. We have confirmed the
ability of BKM120 and BEZ235 to inhibit activated T cell
proliferation and, in the case of BEZ235, we have shown
for the first time the induction of cell cycle arrest in G0/
G1 phase.
Cell proliferation is strongly associated with PI3K/AKT/

mTOR pathway, since components such as AKT, RPS6
and 4E-BP1 drive the synthesis and activity of cell cycle-
related proteins [21–26]. In this regard, we have shown
that the degree of T cell proliferation correlated to phos-
phorylation levels of AKT, 4E-BP1 and RPS6, and that
simultaneous inhibition of PI3K and mTOR was effective
at lower concentrations than PI3K inhibition alone.
On the other hand, the inhibitors reduced not only

RPS6 and 4E-BP1 phosphorylation, but also their

expression. It has been reported that the expression of
ribosomal protein genes, such as RPS6, is cell cycle-
dependent and, therefore, levels of RPS6 remain low
during the G0 phase [27], as we observed in resting T
cells. Thus, the decrease of RPS6 expression could be
linked to the antiproliferative effect of the inhibitors. Re-
garding 4E-BP1, it has been shown that its expression is
downregulated by the activity of MAPKs ERK and p38
[16]. Interestingly, both drugs induced an increase in
p38 phosphorylation, that could contribute to the 4E-
BP1 expression decrease. However, as we had previously
shown for BKM120, neither of the drugs enhanced ERK
phosphorylation on stimulated T cells [11].
On the other hand, BKM120 and BEZ235 induced a

dose-dependent decrease in Th1/Th2 cytokine secretion,
according to studies performed with PI3K [10, 12] and
mTOR inhibitors [28, 29]. Once more, BEZ235 was
more potent than BKM120 at intermediate doses. This
could be due to the direct effect of BEZ235 on mTOR
kinase, which regulates the activity of T-bet and GATA-3,
key transcription factors in Th1/Th2 cytokine production
[5, 6, 30]. Nevertheless, despite an IL-2 decrease at low
doses of BEZ235, concentrations ≥1 μM led to a tendency
to recover IL-2 secretion. Probably, the potent inhibition
of PI3K/mTOR signaling by BEZ235 leads to upregulation
of other pathways that drive IL-2 synthesis, such as
Ca2+/calcineurin/NFAT, NF-κB or RAS pathways. In

Fig. 5 Effect of BKM120 and BEZ235 on the percentage of T cell maturation subsets. Percentage of a early effector and b naïve cells among CD4+ and
CD8+ cells unstimulated or stimulated in the presence of different concentrations of BKM120 or BEZ235. Mean ± SEM of five different
experiments. #p < 0.05 with respect to stimulated untreated samples (0 μM); n.s. non-significant differences with respect to stimulated
untreated samples (0 μM)
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this sense, it is known that after T cell stimulation, initial
high IL-2 production is followed by its decline, due to the
repression of NF-κB and NFAT by T-bet activity [31, 32].
Therefore, mTORC1 inhibition exerted by BEZ235 would
decrease mTORC1-dependent expression of T-bet [5],
leading to IL-2 secretion maintenance. In addition, inhib-
ition of mTOR and PI3K can increase RAS signaling as a
compensatory mechanism, leading to an increase in ERK
phosphorylation [33, 34]. However, we have not observed
a higher ERK phosphorylation in treated T cells. In any
case, the increase in IL-2 levels does not induce an in-
crease in T cell proliferation, probably due to the down-
regulation of IL-2 receptor alpha chain (CD25) observed
in the presence of the drug.
Regarding IFN-γ and granzyme B, their expression is

dependent on T-bet and EOMES [35, 36], which are

regulated by mTORC1 and mTORC2 activity [37].
Accordingly, intracellular expression of these mole-
cules decreased in the presence of BKM120 and, spe-
cially, of BEZ235.
With respect to apoptosis, we have observed that

BEZ235 does not induce significant apoptosis, neither
among resting nor among stimulated T lymphocytes, as
we had previously shown for BKM120 [11, 12]. More-
over, caspase 3 activation, generally considered to be an
apoptosis indicator, decreased with the addition of
BKM120 and BEZ235. This could indicate that the drugs
reduce apoptosis in activated lymphocytes. However, it
should be noted that the inhibitors prevent activation
and, therefore, activation-induced cell death [38]. In
addition, it has been reported that T cell activation in-
duces cleavage of caspase 3 in the absence of apoptosis
[39, 40], what could be reversed by activation inhibition
achieved by the drugs. In any case, neither BKM120 nor
BEZ235 seems to induce apoptosis in stimulated T cells.
Other authors have also shown limited toxicity of
BKM120 and BEZ235 toward normal PBMCs [41–43].
On the other hand, standard GvHD prophylaxis is as-

sociated with high risk of life-threatening opportunistic
infections [44]. Thus, GvHD prophylactic strategies
should induce tolerance of alloreactive T cells but
maintain an adequate immune response against patho-
gens, such as cytomegalovirus (CMV). Previous studies
have shown that mTORC1 inhibition with rapamycin
can induce T cell anergy in vitro [45, 46] and reduce
GvHD incidence [8] as well as CMV reactivation [47]
after allo-HSCT. In addition, we had proved that
mTOR inhibition during allogeneic PBMC stimulation
induced tolerance of alloreactive T cells while preserv-
ing immune response against CMV [48]. In the present
study, we have shown that not only mTOR inhibition
but also PI3K inhibition provides these results.
In general, in vitro studies have shown that BEZ235

exerts a strong inhibitory effect at lower concentra-
tions than BKM120, what is logical since BEZ235 in-
hibits more potently the different PI3K isoforms and
simultaneously targets mTOR. However, it is worthy
to note that the concentrations above which BKM120
achieves similar inhibition to BEZ235 (≥5 μM) are
precisely those in which it drastically decreases phos-
phorylation of mTOR targets (4EBP1, RPS6, AKT
S473), that is, between 1 and 10 μM, as shown by
Western blot. Moreover, BKM120 non-specific activity
against mTOR has been described at concentrations
greater than 2 μM [49]. Thus, it is possible that the
potent effect observed at high concentrations of
BKM120 is due to a direct effect on mTOR as well.
This would indicate that simultaneous targeting of
PI3K and mTOR achieve a better inhibitory capacity
than PI3K inhibition alone. On the other hand, we
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Fig. 6 Effect of BKM120 and BEZ235 on T cell tolerization. Percentage
of IFN-γ secreting cells among lymphocytes pre-stimulated with
allogeneic cells in the presence of different doses of BKM120 or
BEZ235 and re-stimulated, in the absence of drugs, with the same
allogeneic cells or with CMV-pp65. Every value was normalized to the
number of IFN-γ secreting cells that had been pre-stimulated in the
absence of drugs (0 μM) and subjected to the corresponding kind of
re-stimulation. Results are means + SEM of three independent experi-
ments. #p < 0.05 with respect to stimulated untreated samples (0 μM);
n.s. non-significant differences with respect to stimulated untreated
samples (0 μM)
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had previously observed that dual mTORC1/mTORC2
targeting exerts a more potent T cell inhibition than
mTORC1 blockade [48], and similar to PI3K/mTOR
targeting. Thus, we could conclude that to effectively
block PI3K/AKT/mTOR pathway in T cells, we
should block, at least, both mTORC1 and mTORC2
complexes, accompanied or not by PI3K inhibition.
Importantly, BEZ235 reduced more effectively than

BKM120 the percentage of TEE cells, which arise from

Fig. 7 Effect of BEZ235 in a murine model of GvHD. a Kaplan–Meier curve representing overall survival of the different experimental groups: TBI
(n = 4), BM (n = 8), GvHD (n = 15), and GvHD + BEZ235 (n = 11). b Evolution of weight loss of transplanted mice (median weight in grams);
#p < 0.05. c GvHD score of transplanted mice (median); #p < 0.05. d Histopathological analysis of skin, large bowel, and liver samples from
the different experimental groups were obtained in the third week after transplantation and once treatment was completed (beyond 60 days after
transplantation). Apoptotic bodies (yellow arrows), loss of crypts and caliciform cells (green arrows) in large bowel, and lymphocytic infiltration in
periportal areas (black arrows) in the liver are indicated. Original magnification: ×200; insets: ×400

Table 2 Score of tissue damage in GvHD target organs in the
different treatment groups

Skin Large intestine Liver

Third week post-
transplantation

GvHD 2 3 1

GvHD + BEZ235 2 1 1

>60-day post-
transplantation

GvHD 2 2 1

GvHD + BEZ235 0 0 0,5
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naïve T cells after stimulation [50]. This ability to
prevent naïve T cell activation is important, given the
key role played by this T cell population in GvHD in-
duction [51, 52].
Finally, we selected BEZ235 to evaluate its utility on

GvHD prophylaxis. BEZ235 significantly improved mice
survival and ameliorated GvHD-associated signs. On
the other hand, it is probable that the damage observed
in BEZ235-treated animals is not entirely caused by
GvHD, but possibly to drug-induced toxicity as well. In
this sense, it has been reported that the use of PI3K/
AKT/mTOR pathway inhibitors is associated with
metabolic disorders and damages in skin, liver or
gastrointestinal mucosa [53]. Thus, the tissue damage
observed at third week post-transplantation could be
due, at least in part, to a toxic effect of the drug diffi-
cult to discern from GVHD-induced damage in early
post-transplant phases [54, 55]. In addition, BEZ235 ad-
ministration in murine tumor models induces a weight
loss associated with a lower food intake [56]. Thus, fur-
ther studies are warranted to optimize BEZ235 dosing
in order to reduce toxicity.
Our results show the ability of novel PI3K inhibitors

to control T cell activation and confirm their potential
utility as a therapeutic alternative in GvHD manage-
ment. Nevertheless, two questions must be addressed.
On the one hand, the concern arises about their poten-
tial negative effect on anti-leukemia T cells, which would
have a negative impact on relapse incidence. Previous
[42, 43, 57–59] and future studies analyzing their antitu-
mor activity on hematologic malignancies will help to
elucidate if their administration could counterbalance
this negative effect and reduce the incidence of relapse.
On the other hand, it should be noted that the overall in
vivo impact of PI3K inhibitors on T cells will also de-
pend on their effect on other immune cells that
modulate or contribute to T cell activation, such as
antigen-presenting cells. In this sense, both pro- and
anti-inflammatory effects of PI3K inhibitors on mono-
cytes and DCs have been described [60–62]. In our
hands, the use of PI3K inhibitors in total PBMC cul-
tures induced an immunosuppressive effect on T lym-
phocytes similar to that observed in isolated T cell
cultures (present work and data not shown).

Conclusions
PI3K inhibitors hold promise for the treatment of T
cell-mediated diseases, in general, and in particular
of GVHD. Their ability to hamper T cell function to-
gether with their potential anti-leukemia effect turn
the use of drugs that target PI3K/AKT/mTOR path-
way into a promising approach in the context of
allo-HSCT.
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Additional file 1: Figures S1-S4. Figure S1. Effect of BKM120 and
BEZ235 on the percentage of central memory, effector memory, and
effector/TEMRA T cells. Percentage of central memory, effector memory
and effector/TEMRA cells among CD4+ and CD8+ cells unstimulated or
stimulated in the presence of different concentrations of BKM120 or
BEZ235. Mean ± SEM of five different experiments. # p < 0.05 with respect
to stimulated untreated samples (0 μM). Figure S2. Effect of BKM120 and
BEZ235 on the phenotype of different CD4+ T cell maturation subsets.
Percentage of cells expressing CD25, IFN-γ, and granzyme B among
different CD4+ T cell maturation subsets, in samples unstimulated or
stimulated in the presence of different concentrations of BKM120 or
BEZ235. Mean + SD of five different experiments. # p < 0.05 with respect
to stimulated untreated samples (0 μM). Figure S3. Effect of BKM120 and
BEZ235 on the phenotype of different CD8+ T cell maturation subsets.
Percentage of cells expressing CD25, IFN-γ, and granzyme B among
different CD8+ T cell maturation subsets, in samples unstimulated or
stimulated in the presence of different concentrations of BKM120 or
BEZ235. Mean + SD of five different experiments. # p < 0.05 with respect
to stimulated untreated samples (0 μM). Figure S4. Effect of BKM120 and
BEZ235 on granzyme B expression by effector/TEMRA T cells. Median
fluorescence intensity (MFI) of granzyme B among effector/TEMRA CD4+

and CD8+ T cells unstimulated or stimulated in the presence of different
concentrations of BKM120 or BEZ235. Mean + SD of four different experi-
ments. # p < 0.05 with respect to stimulated untreated samples (0 μM).
(PDF 334 kb)
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