191 research outputs found

    Administration of DNA Plasmid Coding Protein Aggregating Domain Induces Inflammatory Bone Loss.

    Get PDF
    Background: Plasmids coding protein aggregation polypeptides from different sources have beenproposed as genetic adjuvants for DNA vaccines. We reported that a plasmid (pATRex), encompassing the DNA sequence for the von Willebrand A (vWA/A) domain of the Anthrax Toxin Receptor-1 (ANTXR-1, alias TEM8, Tumor Endothelial Marker 8), acts as strong immune adjuvant by inducing formation of insoluble intracellular aggregates and subsequent cell death. Aims: In the present study we addressed the question of whether there is any substantial immunotoxicity associated with the use of self-aggregating proteins as genetic adjuvants. Results: Here we report, by mean of histology, X-ray and molecular examinations of bone specimens, the unexpected finding that intramuscular injection of pATRex in mice triggers, per se, severe bone loss (osteoporosis) independently from the sex and genotype of the treated animals. Conclusion: Even though the study suggests that proteinaceous “sticky “ adjuvants are unlikely to find their way into practical vaccination, the information gained is of value as ATRex injections could provide an additional, simplified, mouse model of osteoporosis. Moreover, our results provide an experimental support to the hypothesis that proteotoxic aggregates chronically activate the innate immune system in amyloid and aggregosome disorders

    Sistemi di telemanutenzione intelligente

    Get PDF

    Trace ideals for Fourier integral operators with non-smooth symbols II

    Full text link
    We consider Fourier integral operators with symbols in modulation spaces and non-smooth phase functions whose second orders of derivatives belong to certain types of modulation space. We establish continuity and Schatten-von Neumann properties of such operators when acting on modulation spaces.Comment: 25 page

    Green Plants in the Red: A Baseline Global Assessment for the IUCN Sampled Red List Index for Plants

    Get PDF
    Plants provide fundamental support systems for life on Earth and are the basis for all terrestrial ecosystems; a decline in plant diversity will be detrimental to all other groups of organisms including humans. Decline in plant diversity has been hard to quantify, due to the huge numbers of known and yet to be discovered species and the lack of an adequate baseline assessment of extinction risk against which to track changes. The biodiversity of many remote parts of the world remains poorly known, and the rate of new assessments of extinction risk for individual plant species approximates the rate at which new plant species are described. Thus the question ‘How threatened are plants?’ is still very difficult to answer accurately. While completing assessments for each species of plant remains a distant prospect, by assessing a randomly selected sample of species the Sampled Red List Index for Plants gives, for the first time, an accurate view of how threatened plants are across the world. It represents the first key phase of ongoing efforts to monitor the status of the world’s plants. More than 20% of plant species assessed are threatened with extinction, and the habitat with the most threatened species is overwhelmingly tropical rain forest, where the greatest threat to plants is anthropogenic habitat conversion, for arable and livestock agriculture, and harvesting of natural resources. Gymnosperms (e.g. conifers and cycads) are the most threatened group, while a third of plant species included in this study have yet to receive an assessment or are so poorly known that we cannot yet ascertain whether they are threatened or not. This study provides a baseline assessment from which trends in the status of plant biodiversity can be measured and periodically reassessed

    Approximation of Fourier Integral Operators by Gabor multipliers

    Get PDF
    A general principle says that the matrix of a Fourier integral operator with respect to wave packets is concentrated near the curve of propagation. We prove a precise version of this principle for Fourier integral operators with a smooth phase and a symbol in the Sjoestrand class and use Gabor frames as wave packets. The almost diagonalization of such Fourier integral operators suggests a specific approximation by (a sum of) elementary operators, namely modified Gabor multipliers. We derive error estimates for such approximations. The methods are taken from time-frequency analysis.Comment: 22. page

    3D static and time-dependent modelling of a dc transferred arc twin torch system

    Full text link
    International audienceThe transferred arc plasma torch device consists of two electrodes generating a plasma arc sustained by means of an electric current flowing through the body of the discharge. Modeling works investigating of transferred electric arc discharges generated between two suspended metallic electrodes, in the so called twin torch configuration, are scarce. The discharge generated by this particular plasma source configuration is characterized by a complex shape and fluid dynamics and needs a 3D description in order to be realistically predicted. The extended discharge length that goes from the tungsten pencil cathode to the flat copper anode without any particular confinement wall and the fluid dynamics and magnetic forces acting on the arc may induce an unsteady behavior. In order to capture the dynamic behavior of a twin torch discharge, a 3D time dependent plasma arc model has been developed using a customized commercial code FLUENT form in both Local Thermodynamic Equilibrium (LTE) and non-LTE. A two temperature (2T) model has been developed taking into account only the thermal non-equilibrium effects in argon plasma. The main differences between LTE and 2T models results concern the increased extension of the horizontal section of the discharge and the predicted reduced (of about 60-80V) voltage drop between the electrodes when using a 2T model
    • …
    corecore