419 research outputs found

    Numerical simulation of a binary communication channel: Comparison between a replica calculation and an exact solution

    Full text link
    The mutual information of a single-layer perceptron with NN Gaussian inputs and PP deterministic binary outputs is studied by numerical simulations. The relevant parameters of the problem are the ratio between the number of output and input units, α=P/N\alpha = P/N, and those describing the two-point correlations between inputs. The main motivation of this work refers to the comparison between the replica computation of the mutual information and an analytical solution valid up to αO(1)\alpha \sim O(1). The most relevant results are: (1) the simulation supports the validity of the analytical prediction, and (2) it also verifies a previously proposed conjecture that the replica solution interpolates well between large and small values of α\alpha.Comment: 6 pages, 8 figures, LaTeX fil

    Three terminal capacitance technique for magnetostriction and thermal expansion measurements

    Full text link
    An instrument has been constructed to measure a large range of magnetostriction and thermal expansion between room temperature and 4 K in a superconductive split-coil magnet, that allows investigation in magnetic fields up to 12 T. The very small bulk samples (up to 1 mm in size) as well as big ones (up to 13 mm) of the irregular form can be measured. The possibility of magnetostriction investigation in thin films is shown. A general account is given of both electrical and the mechanical aspects of the design of capacitance cell and their associated electronic circuitry. A simple lever device is proposed to increase the sensitivity twice. The resulting obtained sensitivity can be 0.5 Angstrom. The performance of the technique is illustrated by some preliminary measurements of the magnetostriction of superconducting MgB2, thermal expansion of (La0.8Ba0.2)0.93MnO3 single crystal and magnetoelastic behavior of the Ni/Si(111) and La0.7Sr0.3CoO3/SAT0.7CAT0.1LA0.2(001) cantilevers.Comment: 6 pages, 6 figures, journal pape

    Cretaceous mycelia preserving fungal polysaccharides: taphonomic and paleoecological potential of microorganisms preserved in fossil resins

    Get PDF
    The cortices of pieces of Cretaceous amber around the world commonly are constituted by networks of filamentous structures. Based on their morphological characteristics, such structures have previously been classified in different microorganismal groups. Their correct interpretation, however, is of great importance to establish the conditions of the resin's burial in the forest litter, and can provide important clues regarding the ecology and environmental conditions of Cretaceous resinous forests. Because these networks of filamentous structures present typical fungal morphological features we conducted a study in order to resolve their origin. The cortices of several pieces of Cretaceous amber from Spain were examined using light and scanning electron microscopy, energy dispersive X-ray spectroscopy, and confocal laser scanning microscopy. This is the first time that Calcofluor white and Wheat germ agglutinin conjugated with fluorescein isothiocyanate have been employed as fungal markers in amber, and their use enabled us to detect preserved polysaccharides in the filamentous structures using confocal laser scanning microscopy. These results provide the first and oldest record of ß-1,3 and ß-1,4-linked polysaccharides, and specifically N-acetylglucosamine residues from chitin in a fossil fungus preserved in amber, and to demonstrate that the networks of filamentous structures are mycelia composed of profuse hyphae of a resinicolous fungus. This type of mycelium constitutes one of the largest fungal fossil records known. Using taphonomic data, it is demonstrated that the cortices originated during the Cretaceous due to fungal growth within non-solidified resin. The fossil diagenetic degradation sequence of the fungal hyphae and the surrounding amber is described. This degradation changed the microscopic appearance of the hyphae; thus, some of the previously indicated taxonomic features of this microorganism may actually be fossil diagenetic artifacts. The paleoecological implications with regard to fungal trophic requirements and forest environmental conditions are discusse

    Transverse magnetization in Cu/Ni/Cu epitaxial nanorings

    Get PDF
    The micromagnetic structure in epitaxial (001)-oriented Cu/Ni(14 nm)/Cu rings fabricated by electron beam and focused ion beam lithographies with external diameter of 3 µm and linewidths between 100 and 500 nm is presented. We found that a state with radial orientation of the magnetization prevails at remanence. The evaluation of the magnetoelastic, magnetocrystalline and magnetostatic energies shows that a value as low as 1.5 × 10-3 for the anisotropic relaxation of the in-plane strain components is enough to induce an effective radial easy magnetization direction

    On the Tail of the Overlap Probability Distribution in the Sherrington--Kirkpatrick Model

    Full text link
    We investigate the large deviation behavior of the overlap probability density in the Sherrington--Kirkpatrick model from several analytical perspectives. First we analyze the spin glass phase using the coupled replica scheme. Here generically 1NlogPN(q)\frac1N \log P_N(q) \approx A- {\cal A} ((qqEA)3((|q|-q_{EA})^3, and we compute the first correction to the expansion of \A in powers of TcTT_c-T. We study also the q=1q=1 case, where P(q)P(q) is know exactly. Finally we study the paramagnetic phase, where exact results valid for all qq's are obtained. The overall agreement between the various points of view is very satisfactory. Data from large scale numerical simulations show that the predicted behavior can be detected already on moderate lattice sizes.Comment: 18 pages including ps figure

    Different underlying mechanisms for high and low arousal in probabilistic learning in humans

    Get PDF
    Humans are uniquely capable of adapting to highly changing environments by updating relevant information and adjusting ongoing behaviour accordingly. Here we show how this ability —termed cognitive flexibility— is differentially modulated by high and low arousal fluctuations. We implemented a probabilistic reversal learning paradigm in healthy participants as they transitioned towards sleep or physical extenuation. The results revealed, in line with our pre-registered hypotheses, that low arousal leads to diminished behavioural performance through increased decision volatility, while performance decline under high arousal was attributed to increased perseverative behaviour. These findings provide evidence for distinct patterns of maladaptive decision-making on each side of the arousal inverted u-shaped curve, differentially affecting participants’ ability to generate stable evidence-based strategies, and introduces wake-sleep and physical exercise transitions as complementary experimental models for investigating neural and cognitive dynamics

    Different underlying mechanisms for high and low arousal in probabilistic learning in humans

    Get PDF
    Humans are uniquely capable of adapting to highly changing environments by updating relevant information and adjusting ongoing behaviour accordingly. Here we show how this ability —termed cognitive flexibility— is differentially modulated by high and low arousal fluctuations. We implemented a probabilistic reversal learning paradigm in healthy participants as they transitioned towards sleep or physical extenuation. The results revealed, in line with our pre-registered hypotheses, that low arousal leads to diminished behavioural performance through increased decision volatility, while performance decline under high arousal was attributed to increased perseverative behaviour. These findings provide evidence for distinct patterns of maladaptive decision-making on each side of the arousal inverted u-shaped curve, differentially affecting participants' ability to generate stable evidence-based strategies, and introduces wake-sleep and physical exercise transitions as complementary experimental models for investigating neural and cognitive dynamics
    corecore