10 research outputs found

    Nature Inspired Solutions for Polymers: Will Cutinase Enzymes Make Polyesters and Polyamides Greener?

    Get PDF
    5siThe polymer and plastic sectors are under the urge of mitigating their environmental impact. The need for novel and more benign catalysts for polyester synthesis or targeted functionalization led, in recent years, to an increasing interest towards cutinases due to their natural ability to hydrolyze ester bonds in cutin, a natural polymer. In this review, the most recent advances in the synthesis and hydrolysis of various classes of polyesters and polyamides are discussed with a critical focus on the actual perspectives of applying enzymatic technologies for practical industrial purposes. More specifically, cutinase enzymes are compared to lipases and, in particular, to lipase B from Candida antarctica, the biocatalyst most widely employed in polymer chemistry so far. Computational and bioinformatics studies suggest that the natural role of cutinases in attacking natural polymers confer some essential features for processing also synthetic polyesters and polyamides.openopenFerrario, Valerio; Pellis, Alessandro; Cespugli, Marco; Guebitz, Georg; Gardossi, LuciaFerrario, Valerio; Pellis, Alessandro; Cespugli, Marco; Guebitz, Georg; Gardossi, Luci

    Fully renewable polyesters via polycondensation catalyzed by Thermobifida cellulosilytica cutinase 1: an integrated approach

    Get PDF
    The present study addresses comprehensively the problem of producing polyesters through sustainable processes while using fully renewable raw materials and biocatalysts. Polycondensation of bio-based dimethyl adipate with different diols was catalyzed by cutinase 1 from Thermobifida cellulosilytica (Thc_cut1) under solvent free and thin-film conditions. The biocatalyst was immobilized efficiently on a fully renewable cheap carrier based on milled rice husk. A multivariate factorial design demonstrated that Thc_cut1 is less sensitive to the presence of water in the system and it works efficiently under milder conditions (50 \ub0C; 535 mbar) when compared to lipase B from Candida antarctica (CaLB), thus enabling energy savings. Experimental and computational investigations of cutinase 1 from Thermobifida cellulosilytica (Thc_cut1) disclosed structural and functional features that make this serine-hydrolase efficient in polycondensation reactions. Bioinformatic analysis performed with the BioGPS tool pointed out functional similarities with CaLB and provided guidelines for future engineering studies aiming, for instance, at introducing different promiscuous activities in the Thc_cut1 scaffold. The results set robust premises for a full exploitation of enzymes in environmentally and economically sustainable enzymatic polycondensation reactions

    Lipase mediated enzymatic kinetic resolution of phenylethyl halohydrins acetates: A case of study and rationalization

    Get PDF
    Racemic phenylethyl halohydrins acetates containing several groups attached to the aromatic ring were resolved via hydrolysis reaction in the presence of lipase B from Candida antarctica (Novozym\uae 435). In all cases, the kinetic resolution was highly selective (E > 200) leading to the corresponding (S)-\u3b2-halohydrin with ee > 99 %. However, the time required for an ideal 50 % conversion ranged from 15 min for 2,4-dichlorophenyl chlorohydrin acetate to 216 h for 2-chlorophenyl bromohydrin acetate. Six chlorohydrins and five bromohydrins were evaluated, the latter being less reactive. For the \u3b2-brominated substrates, steric hindrance on the aromatic ring played a crucial role, which was not observed for the \u3b2-chlorinated derivatives. To shed light on the different reaction rates, docking studies were carried out with all the substrates using MD simulations. The computational data obtained for the \u3b2-brominated substrates, based on the parameters analysed such as NAC (near attack conformation), distance between Ser-O and carbonyl-C and oxyanion site stabilization were in agreement with the experimental results. On the other hand, the data obtained for \u3b2-chlorinated substrates suggested that physical aspects such as high hydrophobicity or induced change in the conformation of the enzymatic active site are more relevant aspects when compared to steric hindrance effects

    A community effort in SARS-CoV-2 drug discovery.

    Get PDF
    peer reviewedThe COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against Covid-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 molecules, which were subsequently ranked to find 'consensus compounds'. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for biological activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (only the Nsp12 domain), and (alpha) spike protein S. Overall, 27 compounds with weak inhibition/binding were experimentally identified by binding-, cleavage-, and/or viral suppression assays and are presented here. Open science approaches such as the one presented here contribute to the knowledge base of future drug discovery efforts in finding better SARS-CoV-2 treatments.R-AGR-3826 - COVID19-14715687-CovScreen (01/06/2020 - 31/01/2021) - GLAAB Enric

    Lipase mediated enzymatic kinetic resolution of phenylethyl halohydrins acetates: A case of study and rationalization

    Get PDF
    11siRacemic phenylethyl halohydrins acetates containing several groups attached to the aromatic ring were resolved via hydrolysis reaction in the presence of lipase B from Candida antarctica (NovozymÂź 435). In all cases, the kinetic resolution was highly selective (E>200) leading to the corresponding (S)-ÎČ-halohydrin with ee>99 %. However, the time required for an ideal 50 % conversion ranged from 15 min for 2,4-dichlorophenyl chlorohydrin acetate to 216 h for 2-chlorophenyl bromohydrin acetate. Six chlorohydrins and five bromohydrins were evaluated, the latter being less reactive. For the ÎČ-brominated substrates, steric hindrance on the aromatic ring played a crucial role, which was not observed for the ÎČ-chlorinated derivatives. To shed light on the different reaction rates, docking studies were carried out with all the substrates using MD simulations. The computational data obtained for the ÎČ-brominated substrates, based on the parameters analysed such as NAC (near attack conformation), distance between Ser-O and carbonyl-C and oxyanion site stabilization were in agreement with the experimental results. On the other hand, the data obtained for ÎČ-chlorinated substrates suggested that physical aspects such as high hydrophobicity or induced change in the conformation of the enzymatic active site are more relevant aspects when compared to steric hindrance effects.partially_openopenThiago de Sousa Fonseca, Kimberly Benedetti Vega, Marcos Reinaldo da Silva, Maria da Conceição Ferreira de Oliveira, Telma Leda Gomes de Lemosa, Martina Letizia Contenteb, Francesco Molinari, Marco Cespugli, Sara Fortuna, Lucia Gardossi, Marcos Carlos de Mattos,de Sousa Fonseca, Thiago; Benedetti Vega, Kimberly; Reinaldo da Silva, Marcos; da Conceição Ferreira de Oliveira, Maria; Leda Gomes de Lemosa, Telma; Letizia Contenteb, Martina; Molinari, Francesco; Cespugli, Marco; Fortuna, Sara; Gardossi, Lucia; Carlos de Mattos, Marco

    A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening

    No full text
    The unparalleled global effort to combat the continuing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic over the last year has resulted in promising prophylactic measures. However, a need still exists for cheap, effective therapeutics and targeting multiple points in the viral life cycle could help tackle the current as well as future coronaviruses. Here we leverage our recently developed, ultra-large scale in silico screening platform, VirtualFlow, to search for inhibitors that target SARS-CoV-2. In this unprecedented structure-based virtual campaign, we screened roughly 1 billion molecules against each of 40 different target sites on 17 different potential viral and host targets. In addition to targeting the active sites of viral enzymes, we also targeted critical auxiliary sites such as functionally important protein-protein interactions

    A Multi-Pronged Approach Targeting SARS-CoV-2 Proteins Using Ultra-Large Virtual Screening

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), previously known as 2019 novel coronavirus (2019-nCoV), has spread rapidly across the globe, creating an unparalleled global health burden and spurring a deepening economic crisis. As of July 7th, 2020, almost seven months into the outbreak, there are no approved vaccines and few treatments available. Developing drugs that target multiple points in the viral life cycle could serve as a strategy to tackle the current as well as future coronavirus pandemics. Here we leverage the power of our recently developed in silico screening platform, VirtualFlow, to identify inhibitors that target SARS-CoV-2. VirtualFlow is able to efficiently harness the power of computing clusters and cloud-based computing platforms to carry out ultra-large scale virtual screens. In this unprecedented structure-based multi-target virtual screening campaign, we have used VirtualFlow to screen an average of approximately 1 billion molecules against each of 40 different target sites on 17 different potential viral and host targets in the cloud. In addition to targeting the active sites of viral enzymes, we also target critical auxiliary sites such as functionally important protein-protein interaction interfaces. This multi-target approach not only increases the likelihood of finding a potent inhibitor, but could also help identify a collection of anti-coronavirus drugs that would retain efficacy in the face of viral mutation. Drugs belonging to different regimen classes could be combined to develop possible combination therapies, and top hits that bind at highly conserved sites would be potential candidates for further development as coronavirus drugs. Here, we present the top 200 in silico hits for each target site. While in-house experimental validation of some of these compounds is currently underway, we want to make this array of potential inhibitor candidates available to researchers worldwide in consideration of the pressing need for fast-tracked drug development.</p

    A community effort to discover small molecule SARS-CoV-2 inhibitors

    No full text
    The COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of a community effort, the “Billion molecules against Covid-19 challenge”, to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 potentially active molecules, which were subsequently ranked to find ‘consensus compounds’. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (Nsp12 domain), and (alpha) spike protein S. Overall, 27 potential inhibitors were experimentally confirmed by binding-, cleavage-, and/or viral suppression assays and are presented here. All results are freely available and can be taken further downstream without IP restrictions. Overall, we show the effectiveness of computational techniques, community efforts, and communication across research fields (i.e., protein expression and crystallography, in silico modeling, synthesis and biological assays) to accelerate the early phases of drug discovery
    corecore