16 research outputs found

    Brief communication: Candidate sites of 1.5 Myr old ice 37 km southwest of the Dome C summit, East Antarctica

    Get PDF
    The search for ice as old as 1.5 Myr requires the identification of places that maximize our chances to retrieve old, well-resolved, undisturbed and datable ice. One of these locations is very likely southwest of the Dome C summit, where elevated bedrock makes the ice thin enough to limit basal melting. A 3-D ice flow simulation is used to calculate five selection criteria, which together delineate the areas with the most appropriate glaciological properties. These selected areas (a few square kilometers) lie on the flanks of a bedrock high, where a balance is found between risks of basal melting, stratigraphic disturbances and sufficient age resolution. Within these areas, several sites of potential 1.5 Myr old ice are proposed, situated on local bedrock summits or ridges. The trajectories of the ice particles towards these locations are short, and the ice flows over a smoothly undulating bedrock. These sites will help to choose where new high-resolution ground radar surveys should be conducted in upcoming field seasons

    Reconciling the surface temperature–surface mass balance relationship in models and ice cores in Antarctica over the last 2 centuries

    Get PDF
    Ice cores are an important record of the past surface mass balance (SMB) of ice sheets, with SMB mitigating the ice sheets' sea level impact over the recent decades. For the Antarctic Ice Sheet (AIS), SMB is dominated by large-scale atmospheric circulation, which collects warm moist air from further north and releases it in the form of snow as widespread accumulation or focused atmospheric rivers on the continent. This suggests that the snow deposited at the surface of the AIS should record strongly coupled SMB and surface air temperature (SAT) variations. Ice cores use δ18O as a proxy for SAT as they do not record SAT directly. Here, using isotope-enabled global climate models and the RACMO2.3 regional climate model, we calculate positive SMB–SAT and SMB–δ18O annual correlations over ∼90 % of the AIS. The high spatial resolution of the RACMO2.3 model allows us to highlight a number of areas where SMB and SAT are not correlated, and we show that wind-driven processes acting locally, such as foehn and katabatic effects, can overwhelm the large-scale atmospheric contribution in SMB and SAT responsible for the positive SMB–SAT annual correlations. We focus in particular on Dronning Maud Land, East Antarctica, where the ice promontories clearly show these wind-induced effects. However, using the PAGES2k ice core compilations of SMB and δ18O of Thomas et al. (2017) and Stenni et al. (2017), we obtain a weak annual correlation, on the order of 0.1, between SMB and δ18O over the past ∼150 years. We obtain an equivalently weak annual correlation between ice core SMB and the SAT reconstruction of Nicolas and Bromwich (2014) over the past ∼50 years, although the ice core sites are not spatially co-located with the areas displaying a low SMB–SAT annual correlation in the models. To resolve the discrepancy between the measured and modeled signals, we show that averaging the ice core records in close spatial proximity increases their SMB–SAT annual correlation. This increase shows that the weak measured annual correlation partly results from random noise present in the ice core records, but the change is not large enough to match the annual correlation calculated in the models. Our results thus indicate a positive correlation between SAT and SMB in models and ice core reconstructions but with a weaker value in observations that may be due to missing processes in models or some systematic biases in ice core data that are not removed by a simple average

    Promising Oldest Ice sites in East Antarctica based on thermodynamical modelling

    Get PDF
    To resolve the mechanisms behind the major climate reorganisation, which occurred between 0.9 and 1.2&thinsp;Ma, the recovery of a suitable 1.5 million-year-old ice core is fundamental. The quest for an Oldest Ice core requires a number of key boundary conditions, of which the poorly known basal geothermal heat flux (GHF) is lacking. We use a transient thermodynamical 1-D vertical model that solves for the rate of change of temperature in the vertical, with surface temperature and modelled GHF as boundary conditions. For each point on the ice sheet, the model is forced with variations in atmospheric conditions over the last 2&thinsp;Ma and modelled ice-thickness variations. The process is repeated for a range of GHF values to determine the value of GHF that marks the limit between frozen and melting conditions over the whole ice sheet, taking into account 2&thinsp;Ma of climate history. These threshold values of GHF are statistically compared to existing GHF data sets. The new probabilistic GHF fields obtained for the ice sheet thus provide the missing boundary conditions in the search for Oldest Ice. High spatial resolution radar data are examined locally in the Dome Fuji and Dome C regions, as these represent the ice core community's primary drilling sites. GHF, bedrock variability, ice thickness and other essential criteria combined highlight a dozen major potential Oldest Ice sites in the vicinity of Dome Fuji and Dome C, where GHF could allow for Oldest Ice.</p

    Stagnant ice and age modelling in the Dome C region, Antarctica

    Get PDF
    The European Beyond EPICA project aims to extract a continuous ice core of up to 1.5 Ma, with a maximum age density of 20 kyr m-1 at Little Dome C (LDC). We present a 1D numerical model which calculates the age of the ice around Dome C. The model inverts for basal conditions and accounts either for melting or for a layer of stagnant ice above the bedrock. It is constrained by internal reflecting horizons traced in radargrams and dated using the EPICA Dome C (EDC) ice core age profile. We used three different radar datasets ranging from a 10 000 km2 airborne survey down to 5 km long ground-based radar transects over LDC. We find that stagnant ice exists in many places, including above the LDC relief where the new Beyond EPICA drill site (BELDC) is located. The modelled thickness of this layer of stagnant ice roughly corresponds to the thickness of the basal unit observed in one of the radar surveys and in the autonomous phase-sensitive radio-echo sounder (ApRES) dataset. At BELDC, the modelled stagnant ice thickness is 198±44 m and the modelled oldest age of ice is 1.45±0.16 Ma at a depth of 2494±30 m. This is very similar to all sites situated on the LDC relief, including that of the Million Year Ice Core project being conducted by the Australian Antarctic Division. The model was also applied to radar data in the area 10-15 km north of EDC (North Patch), where we find either a thin layer of stagnant ice (generally &lt;60 m) or a negligible melt rate (&lt;0.1 mm yr-1). The modelled maximum age at North Patch is over 2 Ma in most places, with ice at 1.5 Ma having a resolution of 9-12 kyr m-1, making it an exciting prospect for a future Oldest Ice drill site

    Future Antarctic snow accumulation trend is dominated by atmospheric synoptic-scale events

    No full text
    Over the last century, the increase in snow accumulation has partly mitigated the total dynamic Antarctic Ice Sheet mass loss. However, the mechanisms behind this increase are poorly understood. Here we analyze the Antarctic Ice Sheet atmospheric moisture budget based on climate reanalysis and model simulations to reveal that the interannual variability of regional snow accumulation is controlled by both the large-scale atmospheric circulation and short-lived synoptic-scale events (i.e. storm systems). Yet, when considering the entire continent at the multi-decadal scale, only the synoptic-scale events can explain the recent and expected future snow accumulation increase. In a warmer climate induced by climate change, these synoptic-scale events transport air that can contain more humidity due to the increasing temperatures leading to more precipitation on the continent. Our findings highlight that the multi-decadal and interannual snow accumulation variability is governed by different processes, and that we thus cannot rely directly on the mechanisms driving interannual variations to predict long-term changes in snow accumulation in the future

    Accumulation patterns around Dome C, East Antarctica, in the last 73 kyr

    No full text
    We reconstruct the pattern of surface accumulation in the region around Dome C, East Antarctica, since the last glacial. We use a set of 18 isochrones spanning all observable depths of the ice column, interpreted from various ice-penetrating radar surveys and a 1-D ice flow model to invert for accumulation rates in the region. The shallowest four isochrones are then used to calculate paleoaccumulation rates between isochrone pairs using a 1-D assumption where horizontal advection is negligible in the time interval of each layer. We observe that the large-scale (100s km) surface accumulation gradient is spatially stable through the last 73 kyr, which reflects current modeled and observed precipitation gradients in the region. We also observe small-scale (10 s km) accumulation variations linked to snow redistribution at the surface, due to changes in its slope and curvature in the prevailing wind direction that remain spatially stationary since the last glacial

    Is there 1.5-million-year-old ice near Dome C, Antarctica?

    Get PDF
    International audienceIce sheets provide exceptional archives of past changes in polar climate, regional environment and global atmospheric composition. The oldest dated deep ice core drilled in Antarctica has been retrieved at EPICA Dome C (EDC), reaching ∼ 800 000 years. Obtaining an older paleoclimatic record from Antarctica is one of the greatest challenges of the ice core community. Here, we use internal isochrones, identified from airborne radar coupled to ice-flow modelling to estimate the age of basal ice along transects in the Dome C area. Three glaciological properties are inferred from isochrones: surface accumulation rate, geothermal flux and the exponent of the Lliboutry velocity profile. We find that old ice (> 1.5 Myr, 1.5 million years) likely exists in two regions: one ∼ 40 km south-west of Dome C along the ice divide to Vostok, close to a secondary dome that we name "Little Dome C" (LDC), and a second region named "North Patch" (NP) located 10–30 km north-east of Dome C, in a region where the geothermal flux is apparently relatively low. Our work demonstrates the value of combining radar observations with ice flow modelling to accurately represent the true nature of ice flow, and understand the formation of ice-sheet architecture, in the centre of large ice sheets

    Deep Radiostratigraphy of the East Antarctic Plateau: Connecting the Dome C and Vostok Ice Core Sites

    Get PDF
    Several airborne radar-sounding surveys are used to trace internal reflections around the European Project for Ice Coring in Antarctica Dome C and Vostok ice core sites. Thirteen reflections, spanning the last two glacial cycles, are traced within 200 km of Dome C, a promising region for million-year-old ice, using the University of Texas Institute for Geophysics High-Capacity Radar Sounder. This provides a dated stratigraphy to 2318 m depth at Dome C. Reflection age uncertainties are calculated from the radar range precision and signal-to-noise ratio of the internal reflections. The radar stratigraphy matches well with the Multichannel Coherent Radar Depth Sounder (MCoRDS) radar stratigraphy obtained independently. We show that radar sounding enables the extension of ice core ages through the ice sheet with an additional radar-related age uncertainty of approximately 1/3-1/2 that of the ice cores. Reflections are extended along the Byrd-Totten Glacier divide, using University of Texas/Technical University of Denmark and MCoRDS surveys. However, core-to-core connection is impeded by pervasive aeolian terranes, and Lake Vostok's influence on reflection geometry. Poor radar connection of the two ice cores is attributed to these effects and suboptimal survey design in affected areas. We demonstrate that, while ice sheet internal radar reflections are generally isochronal and can be mapped over large distances, careful survey planning is necessary to extend ice core chronologies to distant regions of the East Antarctic ice sheet
    corecore