60 research outputs found
Ideabook: Libraries for Families
The IDEABOOK is a research-based framework to guide and broaden family engagement in libraries.The framework helps libraries move beyond thinking of family engagement as random, individual activities or programs, but rather as a system where library leadership, activities, and resources that are linked to goals. The framework represents a theory of change that begins with a set of elements—leadership, engagement, and support services—that build a pathway for meaningful family engagement beginning in the early childhood years and extending through young adulthood.This IDEABOOK was developed for anyone who works in a library setting—from library directors and children's and youth librarians, to volunteers and support staff—and shares many innovative ways that libraries support and guide families in children's learning and development
Computing ecosystems: neural networks and embedded hardware platforms
Presented at the CHI2023 Workshop [WS2] - Beyond Prototyping Boards: Future Paradigms for Electronics ToolkitsPresented at the CHI2023 Workshop [WS2] - Beyond Prototyping Boards: Future Paradigms for Electronics ToolkitsPresented at the CHI2023 Workshop [WS2] - Beyond Prototyping Boards: Future Paradigms for Electronics ToolkitsPresented at the CHI2023 Workshop [WS2] - Beyond Prototyping Boards: Future Paradigms for Electronics ToolkitsEmbedded hardware platforms such as single-board computers (e.g., Raspberry Pi, Bela) or microcontrollers (e.g., Teensy, Arduino Uno) offer an entry point for beginners into physical computing. However, deploying neural networks into these platforms is challenging for various reasons: It requires lower-level software development skills, as machine learning toolkits are typically not incorporated into these platforms. Besides, the long compilation times burden debugging and quick prototyping and experimentation. Due to the low-resource nature of embedded hardware platforms, neural networks are usually trained on a host machine, which involves a back-and-forth of data, platforms and programming languages. We inquire how these computing ecosystems might be designed to facilitate prototyping and experimentation and integrate into existing programming workflows
Differentiable Modelling of Percussive Audio with Transient and Spectral Synthesis
Differentiable digital signal processing (DDSP) techniques, including methods for audio synthesis, have gained attention in recent years and lend themselves to interpretability in the parameter space. However, current differentiable synthesis methods have not explicitly sought to model the transient portion of signals, which is important for percussive sounds. In this work, we present a unified synthesis framework aiming to address transient generation and percussive synthesis within a DDSP framework. To this end, we propose a model for percussive synthesis that builds on sinusoidal modeling synthesis and incorporates a modulated temporal convolutional network for transient generation. We use a modified sinusoidal peak picking algorithm to generate time-varying non-harmonic sinusoids and pair it with differentiable noise and transient encoders that are jointly trained to reconstruct drumset sounds. We compute a set of reconstruction metrics using a large dataset of acoustic and electronic percussion samples that show that our method leads to improved onset signal reconstruction for membranophone percussion instruments
DDX7: Differentiable FM Synthesis of Musical Instrument Sounds
FM Synthesis is a well-known algorithm used to generate complex timbre from a compact set of design primitives. Typically featuring a MIDI interface, it is usually impractical to control it from an audio source. On the other hand, Differentiable Digital Signal Processing (DDSP) has enabled nuanced audio rendering by Deep Neural Networks (DNNs) that learn to control differentiable synthesis layers from arbitrary sound inputs. The training process involves a corpus of audio for supervision, and spectral reconstruction loss functions. Such functions, while being great to match spectral amplitudes, present a lack of pitch direction which can hinder the joint optimization of the parameters of FM synthesizers. In this paper, we take steps towards enabling continuous control of a well-established FM synthesis architecture from an audio input. Firstly, we discuss a set of design constraints that ease spectral optimization of a differentiable FM synthesizer via a standard reconstruction loss. Next, we present Differentiable DX7 (DDX7), a lightweight architecture for neural FM resynthesis of musical instrument sounds in terms of a compact set of parameters. We train the model on instrument samples extracted from the URMP dataset, and quantitatively demonstrate its comparable audio quality against selected benchmarks
Infecciones respiratorias causadas por agentes bacterianos en bovinos y ovinos de la Provincia de Corrientes, Argentina
Mannheimia haemolytica, Trueperella pyogenes and Pasteurella multocida are commensal bacteria of the upper respiratory tract of ruminants. However, in presence of predisposing factors, they can trigger the disease and even lead to death. The objective of this study was to determine the causes of morbidity and mortality in calves and lambs from 4 establishments located in the Province of Corrientes, Argentina. During of the period between June and August 2021, 4 cases of respiratory diseases were received at the INTA Mercedes, Corrientes, Animal Health Laboratory, both in cattle (3) and sheep (1). Incase of cattle, the morbidity in each the herd was 3.3% (5/150), 3.5% (7/200) and 12.4% (56/450). In the sheep flock, the morbidity was 8% (4/50). In sick animals, necropsies were performed and samples of lung and lung abscess were taken. In those samples, bacteriological culture and histological analysis were performed. Bacterial agents including T. pyogenes (1), M. haemolytica (2) and P. multocida (1) were detected, associated with the macroscopic findings and histological lesions. In our study, bacterial agents were detected as causing pneumonia represent in between 2 and 6% of mortality in the herds analyzed, so they should be considered as an important cause of death, in order to implement the necessary corrective and preventive measures.Mannheimia haemolytica, Trueperella pyogenes y Pasteurella multocida son bacterias comensales de las vías respiratorias superiores de los rumiantes. Sin embargo, cuando existen factores predisponentes pueden desencadenar enfermedades respiratorias o incluso ocasionar la muerte. El objetivo de este estudio fue determinar las causas de morbilidad y mortalidad en terneros y corderos de 4 establecimientos ubicados en la Provincia de Corrientes, Argentina. Durante los meses de junio a agosto de 2021 se recibieron en el laboratorio de Sanidad Animal del INTA Mercedes, Corrientes, 4 casos de enfermedades respiratorias, tanto en bovinos (3), como en ovinos (1). En el caso de los bovinos, los lotes presentaban una morbilidad de 3,3% (5/150), 3,5% (7/200) y 12,4% (56/450). Por su parte, el lote de ovinos expuestos contó con un 8% (4/50) de animales enfermos. Se realizó la necropsia de los ejemplares, tomando muestras de pulmón y en los casos que estuvieron disponibles, abscesos pulmonares. Con dichas muestras, se realizó el cultivo bacteriológico y análisis histológico. Mediante el cultivo bacteriológico se detectó la acción de T. pyogenes (1), M. haemolytica (2) y P. multocida (1) coincidente con los hallazgos macroscópicos y lesiones histológicas halladas. En nuestro estudio las neumonías por agentes bacterianos representaron entre el 2 y 6% de las causas de mortalidad de los rodeos analizados, por lo que deberían ser tenidas en cuenta como causante de muerte, a fin de implementar las maniobras correctivas y preventivas necesarias
Phytoplankton and Bacterial Communities in South Harbour, Manila Bay, Philippines
In line with the ASEAN-India project “Extent of Transfer of Alien Invasive Organisms in South/Southeast Asia via Shipping”, phytoplankton and bacterial communities in the waters off South Harbour, Manila Bay were investigated. Sampling was done in July and August 2012 and in April and May 2013. A total of 67 phytoplankton species including 29 diatoms and 38 dinoflagellates were identified. Potentially toxic Pseudo-nitzschia spp. were among the diatoms found as well as dinoflagellates Alexandrium spp., and Gymnodinium spp. The diatom Skeletonema costatum appeared to be the dominant species in July and August 2012, whereas Chaetoceros spp. constituted over 85% of the total phytoplankton assemblage in April and May 2013. Mean bacterial
abundance ranged from 9.53 x 102–3.18 x 105 cells/mL in July 2012. In addition, 93 bacterial isolates were identified using 16S rDNA, several of which belonged to the following phyla: Actinobacteria, Bacteriodetes, Firmicutes, and Proteobacteria; whereas, others were determined as uncultured bacterial clones. These results will serve as a valuable baseline for future studies on phytoplankton and bacterial community structure in Manila Bay
Caracterización biológica y genética de la cepa de <i>Neospora caninum</i> NC-6 Argentina y aplicación práctica de la tipificación de microsatélites en infecciones experimentales en bovinos
La infección por Neospora caninum es una de las principales causas de abortos bovinos. Los objetivos de este trabajo fueron caracterizar genéticamente el aislamiento de N.caninum NC-6 Argentina utilizando el análisis de microsatélites y estudiar su comportamiento biológico mediante inoculaciones experimentales en bovinos preñados, evaluando la respuesta inmune producida y la ocurrencia de transmisión transplacentaria. Se inocularon vacas preñadas de 65 días de gestación, seropositivas y seronegativas a N. caninum, con 5 x 107 taquizoítos de la cepa NC-6 y se sacrificaron a los 108 +/- 2 días de gestación. Se tomaron muestras de sueros periódicamente y se les realizó inmunofluorescencia indirecta para anticuerpos. Se obtuvieron muestras de sangre los días 30 y 37, se estimularon in vitro con N. caninum y se analizó la producción de interferón gamma (IFNγ). Se tomaron muestras de órganos de las madres, las placentas y los fetos que fueron procesadas por histopatología, inmunohistoquímica y PCR para ADN de N. caninum Las muestras positivas se analizaron para la tipificación de los microsatélites. Los animales inoculados incrementaron significativamente los títulos de anticuerpos anti-N.caninum y la producción de IFNγ respecto a los controles. Una vaca seropositiva inoculada abortó, un feto del grupo seronegativo no fue viable y el resto de los fetos fueron viables pero presentaron lesiones. La PCR fue positiva en los fetos de las vacas seronegativas y en 2/3 fetos de las seropositivas. El análisis de microsatélites demostró que el ADN presente tenía un patrón idéntico a NC-6 Argentina. Éste es el primer reporte de una infección experimental de bovinos con la cepa de N. caninum aislada en Argentina. Esta cepa demostró su patogenicidad en animales seropositivos y seronegativos, fue capaz de atravesar la placenta y fue patógena para los fetos, el análisis de microsatélites demostró que la cepa hallada en las placentas era NC-6 Argentina.El presente trabajo ha sido galardonado con el Premio Mayor AAPAVET (Asociación Argentina de Parasitología Veterinaria) - Premio Anual Rioplatense 2010/2011 “Congreso Mundial de Parasitología Veterinaria” en la categoría Mejor trabajo original de investigación.Facultad de Ciencias Veterinaria
FM Tone Transfer with Envelope Learning
Tone Transfer is a novel deep-learning technique for interfacing a sound source with a synthesizer, transforming the timbre of audio excerpts while keeping their musical form content. Due to its good audio quality results and continuous controllability, it has been recently applied in several audio processing tools. Nevertheless, it still presents several shortcomings related to poor sound diversity, and limited transient and dynamic rendering, which we believe hinder its possibilities of articulation and phrasing in a real-time performance context. In this work, we present a discussion on current Tone Transfer architectures for the task of controlling synthetic audio with musical instruments and discuss their challenges in allowing expressive performances. Next, we introduce Envelope Learning, a novel method for designing Tone Transfer architectures that map musical events using a training objective at the synthesis parameter level. Our technique can render note beginnings and endings accurately and for a variety of sounds; these are essential steps for improving musical articulation, phrasing, and sound diversity with Tone Transfer. Finally, we implement a VST plugin for real-time live use and discuss possibilities for improvement
- …