1,271 research outputs found

    Salix shrub encroachment along a 1000 m elevation gradient triggers a major ecosystem change in the European Alps

    Get PDF
    Shrub encroachment, a globally recognized response to climate warming, usually involves late successional species in mountain environments, without alteration to climax communities. We show that a major ecosystem change is occurring in the European Alps across a 1000 m elevation gradient, with pioneer hygrophilous Salix shrubs, previously typical of riparian forests, wetlands and avalanche ravines, encroaching into the climax communities of subalpine and alpine belts shrublands and grasslands, as well as snowbeds, pioneer vegetation and barren grounds in the nival belt. We analyzed Salix recruitment through dendrochronological methods, and assessed its relationships with climate and atmospheric CO2 concentration. The dendrochronological data indicated that Salix encroachment commenced in the 1950s (based on the age of the oldest Salix individuals, recruited in 1957), and that it was correlated with increasing atmospheric CO2 concentration, spring warming and snow cover decrease. Hygrophilous Salix shrubs are expanding their distribution both through range filling and upwards migration, likely achieving competitive replacement of species of subalpine and alpine climax communities. They benefit from climate warming and CO2 fertilization and are not sensitive to spring frost damage and soil limitations, being observed across a gradient of soil conditions from loose glacial sediments in recently deglaciated areas (where soils had not had sufficient time to develop) to mature soils such as podzols (when colonizing late successional subalpine shrublands). Salix encroachment may trigger ecosystem and landscape transformations, promoting the development of forests that replace pre-existing subalpine shrublands, and of open woodlands invading alpine grasslands and snowbeds, making the alpine environment similar to sub-Arctic and Arctic areas. This results in a new threat to the conservation of the plant species, communities and landscapes typical of the alpine biota, as mountain ranges such as the Alps provide limited opportunities for upward migration and range-shift

    Flour from sprouted wheat as a new ingredient in bread-making

    Get PDF
    Despite the nutritional and sensory improvements associated with sprouted grains, their use in baking has been limited until recently. Indeed, severe and uncontrolled grain sprouting induces high accumulations of enzymatic activities that negatively affect dough rheology and baking performance. In this study, wheat was sprouted under controlled conditions and the effects of enrichment (i.e. 15%, 25%, 33%, 50%, 75% and 100%) of the related refined flour (SWF) on dough rheological properties, baking performances and starch digestibility were assessed. Adding SWF to flour significantly decreased dough water absorption, development time, and stability during mixing, which suggests a weakening of the gluten network. However, no significant changes in mixing properties and gluten aggregation kinetics were measured from 25 to 75% SWF. Regardless of the amount added, SWF improved dough development and gas production during leavening. Decreases in gas retention did not compromise bread-making performances. The best result – in terms of bread volume and crumb porosity – was obtained with 50% SWF instead of using SWF alone. Interestingly, in 100 % SWF bread the slowly digestible starch fraction significantly increased

    The Raman Fingerprint of Graphene

    Full text link
    Graphene is the two-dimensional (2d) building block for carbon allotropes of every other dimensionality. It can be stacked into 3d graphite, rolled into 1d nanotubes, or wrapped into 0d fullerenes. Its recent discovery in free state has finally provided the possibility to study experimentally its electronic and phonon properties. Here we show that graphene's electronic structure is uniquely captured in its Raman spectrum that clearly evolves with increasing number of layers. Raman fingerprints for single-, bi- and few-layer graphene reflect changes in the electronic structure and electron-phonon interactions and allow unambiguous, high-throughput, non-destructive identification of graphene layers, which is critically lacking in this emerging research area

    Characterisation of a track structure imaging detector

    Get PDF
    The spatial distribution of radiation-induced ionisations in sub-cellular structures plays an important role in the initial formation of radiation damage to biological tissues. Using the nanodosimetry approach, physical characteristics of the track structure can be measured and correlated to DNA damage. In this work, a novel nanodosimeter is presented, which detects positive ions produced by radiation interacting with a gas-sensitive volume in order to obtain a high resolution image of the radiation track structure. The characterisation of the detector prototype was performed and different configurations of the device were tested by varying the detector cathode material and the working gas. Preliminary results show that the ionisation cluster size distribution can be obtained with this approach. Further work is planned to improve the detector efficiency in order to register the complete three-dimensional track structure of ionising radiatio

    One-Year Quality of Life Trends in Early-Stage Lung Cancer Patients After Lobectomy

    Get PDF
    Objective: Quality of Life (QoL) is an important predictor of patient's recovery and survival in lung cancer patients. The aim of the present study is to identify 1-year trends of lung cancer patients' QoL after robot-assisted or traditional lobectomy and investigate whether clinical (e.g., pre-surgery QoL, type of surgery, and perioperative complications) and sociodemographic variables (e.g., age) may predict these trends. Methods: An Italian sample of 176 lung cancer patients undergoing lobectomy completed the European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire—Core 30 (QLQ-C30) at the pre-hospitalization (t0), 30 days (t1), 4 months (t2), 8 months (t3), and 12 months (t4) after surgery. Sociodemographic and clinical characteristics (age, gender, perioperative complications, and type of surgery) were also collected. The individual change over time of the 15 dimensions of the EORTC QLQ-C30 and the effects of pre-surgery scores of QoL dimensions, type of surgery, perioperative complications, and age on patients' QoL after surgery were studied with the individual growth curve (IGC) models. Results: Patients had a good recovery after lobectomy: functioning subscales improved over time, while most of the symptoms became less severe over the care process. Perioperative complications, type of surgery, pre-surgery status, and age significantly affected these trends, thus becoming predictors of patients' QoL. Conclusion: This study highlights different 1-year trends of lung cancer patients' QoL. The measurement of pre- and post-surgery QoL and its clinical and sociodemographic covariables would be necessary to better investigate patients' care process and implement personalized medicine in lung cancer hospital divisions

    Nutritional features and bread-making performance of wholewheat: Does the milling system matter?

    Get PDF
    Despite the interest in stone-milling, there is no information on the potential advantages of using the resultant wholegrain flour (WF) in bread-making. Consequently, nutritional and technological properties of WFs obtained by both stone- (SWF) and roller-milling (RWF) were assessed on four wheat samples, differing in grain hardness and pigment richness. Regardless of the type of wheat, stone-milling led to WFs with a high number of particles ranging in size from 315 to 710 µm), whereas RWFs showed a bimodal distribution with large (>1000 µm) and fine (<250 µm) particles. On average, the milling system did not affect the proximate composition and the bioactive features of WFs. The gluten aggregation kinetics resulted in similar trends for all SWFs, with indices higher than for RWFs. The effect of milling on dough properties (i.e., mixing and leavening) was sample dependent. Overall, SWFs produced more gas, resulting in bread with higher specific volume. Bread crumb from SWF had higher lutein content in the wheat cv rich in xanthophylls, while bread from RWF of the blue-grained cv had a moderate but significantly higher content in esterified phenolic acids and total anthocyanins. In conclusion, there was no relevant advantage in using stone- as opposed to roller-milling (and vice versa)
    • …
    corecore