901 research outputs found

    Single Channel Properties of Rat Acid–sensitive Ion Channel-1α, -2a, and -3 Expressed in Xenopus Oocytes

    Get PDF
    The mammalian nervous system expresses proton-gated ion channels known as acid-sensing ion channels (ASICs). Depending on their location and specialization some neurons express more than one type of ASIC where they may form homo- or heteromeric channels. Macroscopic characteristics of the ASIC currents have been described, but little is known at the single channel level. Here, we have examined the properties of unitary currents of homomeric rat ASIC1α, ASIC2a, and ASIC3 expressed in Xenopus oocytes with the patch clamp technique. We describe and characterize properties unique to each of these channels that can be used to distinguish the various types of ASIC channels expressed in mammalian neurons. The amplitudes of the unitary currents in symmetrical Na+ are similar for the three types of channels (23–18 pS) and are not voltage dependent. However, ASIC1α exhibits three subconductance states, ASIC2a exhibits only one, and ASIC3 none. The kinetics of the three types of channels are different: ASIC1α and ASIC2a shift between modes of activity, each mode has different open probability and kinetics. In contrast, the kinetics of ASIC3 are uniform throughout the burst of activity. ASIC1α, ASIC2a, and ASIC3 are activated by external protons with apparent pH50 of 5.9, 5.0, and 5.4, respectively. Desensitization in the continual presence of protons is fast and complete in ASIC1α and ASIC3 (2.0 and 4.5 s−1, respectively) but slow and only partial in ASIC2a (0.045 s−1). The response to external Ca2+ also differs: ÎŒM concentrations of extracellular Ca2+ are necessary for proton gating of ASIC3 (EC50 = 0.28 ÎŒM), whereas ASIC1α and ASIC2a do not require Ca2+. In addition, Ca2+ inhibits ASIC1α (KD = 9.2 ± 2 mM) by several mechanisms: decrease in the amplitude of unitary currents, shortening of the burst of activity, and decrease in the number of activated channels. Contrary to previous reports, our results indicate that the Ca2+ permeability of ASIC1α is very small

    Finite-Size Scaling in Two-dimensional Continuum Percolation Models

    Full text link
    We test the universal finite-size scaling of the cluster mass order parameter in two-dimensional (2D) isotropic and directed continuum percolation models below the percolation threshold by computer simulations. We found that the simulation data in the 2D continuum models obey the same scaling expression of mass M to sample size L as generally accepted for isotropic lattice problems, but with a positive sign of the slope in the ln-ln plot of M versus L. Another interesting aspect of the finite-size 2D models is also suggested by plotting the normalized mass in 2D continuum and lattice bond percolation models, versus an effective percolation parameter, independently of the system structure (i.e. lattice or continuum) and of the possible directions allowed for percolation (i.e. isotropic or directed) in regions close to the percolation thresholds. Our study is the first attempt to map the scaling behaviour of the mass for both lattice and continuum model systems into one curve.Comment: 9 pages, Revtex, 2 PostScript figure

    Stochastic dominance to account for uncertainty and risk in conservation decisions

    Get PDF
    Practical conservation normally requires making decisions in the face of uncertainty. Our attitude toward that uncertainty, and the risks it entails, shape the way conservation decisions are made. Stochastic dominance (SD), a method more commonly used in economics, can be used to rank alternative conservation actions by comparing the probability distributions of their outcomes, making progressive simplified assumptions about the preferences of decision makers. Here, we illustrate the application of SD to conservation decisions using the recovery plan for an endangered frog species in Australia as a case study. Stochastic dominance is simple and intuitively appealing for conservation decisions; its broader application may encourage conservation decision makers to consider probabilistic uncertainty in light of their preferences, which may otherwise be difficult to recognize and assess transparently. A better treatment of attitudes towards uncertainty and risk may help ensure rational decision making in conservation and remove potential causes of stakeholder conflict

    Lithology could affect benthic communities living below boulders

    Get PDF
    AbstractStructure and diversity of sessile zoobenthic assemblages seem to be driven not only by chemical-physical constraints and biological interactions but also by substrate lithology and its surface features. Nevertheless, broadly distributed crustose epilithic corallines could mask the role of substrate on animal settling. To evaluate the direct influence of different rocky substrates, occurrence and coverage of several sessile species, growing on the dark (i.e. coralline-free) face of sublittoral limestone and granite boulders were compared in the Tavolara MPA (Mediterranean Sea). The analysis of photographic samples demonstrated significant differences in terms of species composition and coverage, according to lithology. Moreover, limestone boulders were widely bare, while the cover per cent was almost total on granite. The leading cause of observed patterns could be the different level of dissolution of the two types of rocks, due to their different mineral composition and textural characteristics. Limestone has previously been shown to have higher dissolution compared with granite, and consequently, a more unstable surface. Our results suggest that, in dark habitats, the absence of the crustose coralline layer allows more rock dissolution and consequent lower stability of the limestone compared with granite, which, in turn, reduces the zoobenthos colonization

    Prefrontal involvement in imitation learning of hand actions : effects of practice and expertise.

    Get PDF
    In this event-related fMRI study, we demonstrate the effects of a single session of practising configural hand actions (guitar chords) on cortical activations during observation, motor preparation, and imitative execution. During the observation of non-practised actions, the mirror neuron system (MNS), consisting of inferior parietal and ventral premotor areas, was more strongly activated than for the practised actions. This finding indicates a strong role of the MNS in the early stages of imitation learning. In addition, the dorsolateral prefrontal cortex (DLPFC) was selectively involved during observation and motor preparation of the non-practised chords. This finding confirms Buccino et al.’s (2004a) model of imitation learning: for actions that are not yet part of the observer’s motor repertoire, DLPFC engages in operations of selection and combination of existing, elementary representations in the MNS. The pattern of prefrontal activations further supports Shallice’s (2004) proposal of a dominant role of the left DLPFC in modulating lower-level systems, and of a dominant role of the right DLPFC in monitoring operations

    The paleo-community of the Sciacca red coral

    Get PDF
    The sub-fossil red coral deposits of Sciacca (Sicily Channel) have attracted scientific attention for nearly 150 years. Their origin and formation have been long questioned and investigated, given the fact that they represent one of the most intriguing geobiological events ever to occur in the Mediterranean basin. Less attention was given to the paleo-community associated with the sub-fossil coral. Radiocarbon age determinations, in particular, were provided only for red coral, neglecting the possibility of understanding which species were simultaneously present in the coralline paleo-community and which was their role. The study of cemented coral rubble pieces revealed that Corallium rubrum covered the largest time interval (more than 3000 years) and was contemporary to many secondary epibionts over two millennia and to Madrepora oculata for about 500 years; this last finding suggested that an uncommon co-dominance between the two structuring species occurred in the nearby living communities. The lack of Fe-Mg deposits on the cemented coral rubbles coupled with the low bioerosion rate of the red coral skeletons by the demosponge Siphonodictyon coralliirubri (assessed through the analysis of the erosive paleo-scars) suggested that the deposits met with a rapid sediment cover-up. Moreover, for the first time, the analysis of a piece of cemented coral rubble of sub-fossil red coral coming from Sardinian waters confirmed that, albeit to a lesser extent, the conditions favouring the preservation of dead corals can occur also in different localities far from Sciacca
    • 

    corecore