
 

 

 

This article has been accepted for publication and undergone full peer review but has not been 

through the copyediting, typesetting, pagination and proofreading process, which may lead to 

differences between this version and the Version of Record. Please cite this article as doi: 

10.1111/conl.12218. 

 

This article is protected by copyright. All rights reserved. 

 

Stochastic dominance to account for uncertainty and risk in conservation decisions 1 

 2 

Stefano Canessa*
1,2

, John G. Ewen
1
, Matt West

2
, Michael A. McCarthy

2
 and Terry V. 3 

Walshe
3
 4 

1
Institute of Zoology, Zoological Society of London, Regents Park, London, United Kingdom 5 

2
School of BioSciences, University of Melbourne, Victoria, Australia 6 

3
Australian Institute of Marine Science, Townsville, Qld, Australia 7 

 8 

* Corresponding author 9 

 10 

E-mails: SC: science@canessas.com; JGE: John.Ewen@ioz.ac.uk; MW: 11 

mwest@student.unimelb.edu.au; MAMC: mamcca@unimelb.edu.au; TVW: 12 

twalshe@unimelb.edu.au 13 

 14 

Running title: Stochastic dominance for conservation decisions 15 

Keywords. Cumulative distribution function; elicitation; management objectives; risk 16 

assessment; threatened species; translocation; triage; uncertainty; utility. 17 

Type of article: Letter 18 

Word count: abstract 150; manuscript 2995 (excl. References and figure legends) 19 

Number of references: 40 20 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/110903436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
mailto:science@canessas.com
mailto:John.Ewen@ioz.ac.uk
mailto:mwest@student.unimelb.edu.au
mailto:mamcca@unimelb.edu.au
mailto:twalshe@unimelb.edu.au


 

 

 
This article is protected by copyright. All rights reserved. 
  
  

Number of figures: 4 21 

Number of tables: 0 22 

 23 

Abstract 24 

Practical conservation normally requires making decisions in the face of uncertainty. Our 25 

attitude toward that uncertainty, and the risks it entails, shape the way conservation decisions 26 

are made. Stochastic dominance (SD), a method more commonly used in economics, can be 27 

used to rank alternative conservation actions by comparing the probability distributions of 28 

their outcomes, making progressive simplified assumptions about the preferences of decision 29 

makers. Here, we illustrate the application of SD to conservation decisions using the recovery 30 

plan for an endangered frog species in Australia as a case study. Stochastic dominance is 31 

simple and intuitively appealing for conservation decisions; its broader application may 32 

encourage conservation decision makers to consider probabilistic uncertainty in light of their 33 

preferences, which may otherwise be difficult to recognize and assess transparently. A better 34 

treatment of attitudes towards uncertainty and risk may help ensure rational decision making 35 

in conservation and remove potential causes of stakeholder conflict. 36 

 37 

Introduction 38 

Conservation biology aims to develop practical solutions to protect and restore natural 39 

systems and their functions (Soulé 1985). However, the predicted outcomes of conservation 40 

actions are typically uncertain,  reflecting our incomplete knowledge of variable natural 41 

systems (Regan et al. 2002). While some actions will be successful in conserving systems, 42 
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others can end up accelerating the same systems’ demise. Consider for example the risk of 43 

introducing new diseases during species translocations (Cunningham 1996) or the potential 44 

damage from trophic cascades following eradication of invasive species (Bergstrom et al. 45 

2009). Conservation decisions are routinely made in the face of such risks. 46 

In expected utility theory (EUT: Von Neumann and Morgenstern 1944) decisions under 47 

probabilistic uncertainty are represented as lotteries which can lead to different outcomes, 48 

each with a given probability of occurring. Consider a hypothetical example in which 49 

managers need to choose between three conservation actions (Fig. 1a). Action A may 50 

preserve either two or six species with equal probability (p=0.5); action B may preserve 51 

either twenty or zero species with a probability of 0.2 and 0.8 respectively; action C is certain 52 

to preserve four species. Although actions with certain outcomes are unlikely in conservation, 53 

the use of a “certainty equivalent” assists in understanding risk attitude. Conservation 54 

decision makers will generally seek to maximize the number of species preserved; however, 55 

the action selected  will also depend on their risk attitude (Pratt 1964). In this example, a risk-56 

neutral decision maker will rate all actions equally: the expected outcome (the average of the 57 

possible outcomes weighted by their probabilities) is the same (four species). A risk-averse 58 

decision maker may choose action C to avoid the risk of a poor outcome. A risk-seeking 59 

decision maker may choose action B, preferring a chance of achieving the best possible 60 

outcome.  61 

Within EUT the attitude of a rational decision maker can be represented by a utility function, 62 

which describes the satisfaction derived from different outcomes (Von Neumann and 63 

Morgenstern 1944). Rational decision makers will seek to maximize the utility of their 64 

decisions. In the above example, a risk-neutral decision maker has a linear utility function: 65 

they obtain the same utility from all actions with the same expected value (Fig. 1b). A risk-66 
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averse decision maker will obtain greater utility (satisfaction) by avoiding poor outcomes, so 67 

their utility function will be concave. A risk-seeking decision maker will have a convex 68 

utility function, reflecting their preference for highly positive outcomes (Fig. 1b).  69 

A failure to account for such differences in risk attitude can lead to conflict and undermine 70 

conservation efforts, even when stakeholders may share the same broad conservation 71 

objective. This problem has been recognized by several authors (Duncan and Wintle 2008; 72 

Finnoff et al. 2007; Mace and Hudson 1999). However, risk attitude is rarely openly 73 

addressed in real-world conservation decision making (Greiner et al. 2009). Conservation 74 

decision makers may find it challenging to address personal values such as risk attitudes, 75 

which in turn involve ethical or “protected” values (Gregory et al. 2012), particularly where 76 

these are confounded with scientific judgment (Wilhere 2012). Defining utility functions can 77 

also be technically challenging (Durbach and Stewart 2009).  78 

Here, we illustrate how stochastic dominance (SD; Levy 1998) can facilitate the explicit 79 

evaluation of risk in conservation decisions. This method is well known and frequently 80 

applied in economics (Levy 1992), but has rarely been applied in conservation, in spite of its 81 

potential value (Benítez et al. 2006; Knoke et al. 2008; Yemshanov et al. 2012). We illustrate 82 

the concepts and calculations of SD using a case study of threatened species management, 83 

and then discuss its advantages and limitations for conservation applications. 84 

Stochastic dominance 85 

Case study 86 

Stochastic dominance is a decision-analytic tool that allows the preferential ordering of 87 

alternative actions with different probabilistic outcomes. To explain the key concepts and 88 
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calculations of SD we consider the case of the endangered spotted tree frog Litoria spenceri 89 

in south-eastern Australia. Population declines have been linked to fungal infection (Gillespie 90 

2014), habitat degradation (Gillespie 2002) and invasive species (Gillespie 2001). In-situ and 91 

ex-situ management actions have been proposed and implemented with the objective of 92 

downgrading the species to a less severe threat category (Gillespie and Clemann in press).  93 

Here, we build on the example described in Canessa et al. (in press), focusing on a system of 94 

one extant population and one potential reintroduced population, where the objective was to 95 

maximize the overall probability of persistence at the end of a 20-year period. We consider 96 

five possible management strategies: (1) doing nothing, (2) full in-situ management of the 97 

existing population only, including control of weeds and introduced trout, (3) 98 

supplementation (sensu IUCN/SSC 2013) of the existing population by releasing captive-bred 99 

individuals, with full in-situ management, (4) reintroduction of captive-bred individuals to a 100 

new site with no further in-situ management and (5) reintroduction of captive-bred 101 

individuals to a new site and full in-situ management of all populations. Note this set of 102 

actions is not exhaustive and used here only for illustrative purposes. 103 

The first step to formally assess risk is to predict the expected outcomes of each action and 104 

the relative uncertainty. We consider two scenarios with different levels of risk. The first 105 

scenario assumes that an ex-situ population has been successfully established and individuals 106 

are available for release (the actual current situation of the L. spenceri recovery plan). The 107 

second assumes that the ex-situ population has not yet been established; the probability of 108 

successful establishment (and production of animals for release) is estimated as 50%. This 109 

second scenario represented the decision problem at the beginning of the recovery plan, in the 110 

face of greater uncertainty.  111 
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During a workshop, we used a modified Delphi technique (see McBride et al. 2012 for 112 

details) to elicit the expected outcome (probability of persistence) for each of the five 113 

management strategies from a panel of experts. The distributions of outcomes for each action 114 

under the two scenarios are represented in Figure 2. Particularly in the second scenario (Fig. 115 

2b), uncertainty is reflected by the considerable overlap among distributions. 116 

First-order stochastic dominance 117 

We can assess candidate actions in the face of uncertainty by comparing their cumulative 118 

distribution functions (CDFs). For any value x over the interval [a,b], the CDF of a function 119 

f(x) is the cumulative probability that the value of f(x) is not greater than x. In other words, for 120 

a given action the CDF represents the probability that the outcomes of that action will be 121 

equal to or worse than a given value. For example, Figure 3a shows the CDFs of the 122 

distributions of outcomes for each action, obtained through numerical integration. The CDF 123 

for a persistence of 0.2 (x-axis) is 0.6 (y-axis) for Action 1 (doing nothing) and 0.2 (y-axis) 124 

for Action 2 (in-situ management only). Therefore, the probability of persistence is more 125 

likely to be greater than 0.2 when doing in-situ management than when taking no action. 126 

When the objective is to maximize the value of x (in this case species persistence), the 127 

rational choice is to select the action with the smallest CDF for a given value of x. 128 

Assuming that greater utilities will always be preferred (more is better) implies that the utility 129 

function is non-decreasing and its first derivative u’ is always positive. Under this 130 

assumption, Action A has first-order stochastic dominance (FSD) over Action B if: 131 

FA(x) ≤ FB(x) for all x, and       Eq. 1 132 

FA(x) < FB(x) for at least one value of x 133 
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where FA(x) and FB(x) are the CDFs of the utility functions for actions A and B respectively 134 

(Levy 1998). In other words, A dominates B at the first order when it has a smaller or equal 135 

CDF for any value of the objective x (in this case persistence): the CDF curve for A is always 136 

below or equal to the CDF curve for B, i.e. the two curves do not cross. 137 

In the case of L. spenceri, the preference assumption is valid, since the recovery objective for 138 

the species is to maximize the probability of persistence. In the first scenario (known ex-situ 139 

success), the CDFs of the outcomes for all actions do not cross, and Action 5 (reintroduction 140 

paired with in-situ management), has first-order dominance over all other actions (Fig. 3a).  141 

Therefore, it represents the best action for any rational decision maker, and choosing it over 142 

other actions involves no risk.  143 

Conversely, when ex-situ success is uncertain, the cumulative distribution functions for the 144 

selected actions cross in two cases (Fig. 3b): between Action 2 and Action 3, and between 145 

Action 4 and Action 5 (reintroduction without and with in-situ management respectively). 146 

The latter pair first-order dominates all other actions, which can therefore be discarded 147 

regardless of risk. The choice between Actions 4 and 5, however, involves risk attitude. 148 

Action 4 has a small chance of leading to greater persistence (the right-hand tail of the 149 

distribution), possibly reflecting less reliance on ongoing management; on the other hand, it 150 

also has a greater chance of a less positive outcome (the left-hand tail of the distribution). A 151 

risk-neutral decision maker would be indifferent to the level of risk, and would simply select 152 

the strategy with the highest mean persistence (0.63 and 0.61 respectively for reintroduction 153 

with and without in-situ management). For non-neutral risk attitudes, first-order SD cannot 154 

discriminate between these two actions; second-order SD must be explored instead. 155 

Second-order stochastic dominance 156 
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Second-order SD requires knowledge of the general risk attitude of the decision maker; that 157 

is, whether they are risk-averse or risk-seeking.  158 

For a risk-averse decision maker, the preference for minimizing risk implies a concave utility 159 

function with a second derivative that is always negative (Fig. 1b). Under this assumption of 160 

risk aversion, we can compare actions using the ascending integral of the CDF, ∫ 𝐹(𝑦)𝑑𝑦
𝑥

𝑎
. 161 

Action A has ascending second-order stochastic dominance over Action B if 162 

∫ 𝐹𝐴(𝑦)𝑑𝑦
𝑥

𝑎
 ≤ ∫ 𝐹𝐵(𝑦)𝑑𝑦

𝑥

𝑎
 for all x, and     Eq. 2 163 

 ∫ 𝐹𝐴(𝑦)𝑑𝑦
𝑥

𝑎
 < ∫ 𝐹𝐵(𝑦)𝑑𝑦

𝑥

𝑎
 for at least one value of x (Levy 1998). 164 

If we consider the L. spenceri scenario in which the probability of ex-situ establishment is 165 

0.5, the choice is now restricted to reintroduction with and without in-situ management of 166 

both source and reintroduced population, which dominated all other actions at the first order. 167 

The ascending integrals of the two CDFs do not cross, so again Action 5, reintroduction with 168 

in-situ management of both source and reintroduced populations, is the best action, since it 169 

has second-order dominance (Fig. 4a).  170 

Conversely, a risk-seeking decision maker will prefer a higher probability of persistence even 171 

if it involves a greater risk: this attitude implies a convex utility function with a second 172 

derivative that is always positive. Under this condition, we can compare actions using the 173 

descending integral of the complementary CDF, ∫ 𝐹′(𝑦)𝑑𝑦
𝑏

𝑥
 (Wong & Li, 1999). For any 174 

value of x, this can be interpreted as the area above the CDF to the right of x (as opposed to 175 

the ascending integral in Eq. 2, which corresponds to the area under the CDF to the left of x). 176 

Action A has descending second-order stochastic dominance over Action B if 177 
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∫ 𝐹′𝐴(𝑦)𝑑𝑦
𝑏

𝑥
 ≥ ∫ 𝐹′𝐵(𝑦)𝑑𝑦

𝑏

𝑥
 for all x, and     Eq. 3 178 

 ∫ 𝐹′𝐴(𝑦)𝑑𝑦
𝑏

𝑥
 > ∫ 𝐹′𝐵(𝑦)𝑑𝑦

𝑏

𝑥
 for at least one value of x. 179 

For the L. spenceri example, the descending integrals of the CDFs for Action 4 and Action 5, 180 

reintroduction without and with in-situ management respectively, cross (Fig 4b). A risk-181 

seeking decision-maker could not use SSD to discriminate between the two actions: a rational 182 

choice could be sought by exploring third-order SD (Whitmore 1970). This would require us 183 

to elicit the shape of the marginal utility function of the decision makers (Von Winterfeldt 184 

and Edwards 1986), which in turn corresponds to making assumptions about the third 185 

derivative of the utility function (Whitmore 1970). Such assumptions, and those for higher-186 

order SD, may be difficult to interpret and apply to conservation decisions. More realistically, 187 

since the absolute difference between the two actions is marginal (Fig. 4b), the risk-seeking 188 

decision maker might simply be indifferent to the choice, or discriminate based on cost 189 

preferences instead. 190 

Discussion 191 

Uncertainty is a key element of conservation decision making (McCarthy 2014), and it can 192 

have different implications for decision makers depending on their risk attitude. However, 193 

conservation decisions under uncertainty often rely on expected values to choose among 194 

actions (mean outcomes; e.g. Canessa et al., in press) which do not immediately convey 195 

information about uncertainty or risk attitudes, assuming risk neutrality (Fig. 1a). An 196 

alternative approach in economics is to take the variance or standard deviation as a measure 197 

of risk, evaluating the mean-variance relationship for a defined degree of risk-aversion 198 

(Markowitz 1987; see Leskinen et al. 2006 for a conservation application). However, the 199 
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variance is an adequate measure of risk only for a normal distribution, which is not likely to 200 

represent many conservation outcomes with skewed distributions. Conversely, stochastic 201 

dominance uses the full distributions of outcomes instead of one or two moments of the 202 

distribution.  203 

In addition, a mean-variance analysis still requires a complete formulation of utility functions 204 

through indifference curves (Markowitz 1987). In this sense, possibly the greatest benefit of 205 

applying a non-parametric method such as SD to conservation decisions is in encouraging an 206 

explicit treatment of uncertainty and risk attitudes by reducing the elicitation burden on 207 

decision makers. Increasing orders of SD can be tested by progressively eliciting only limited 208 

information about the attitudes of decision-makers (Hildebrandt and Knoke 2011). Testing 209 

for FSD only requires an assumption of non-decreasing utility, and the calculation of CDFs 210 

for predicted outcomes. Full probability distributions can be obtained from quantitative 211 

analysis of empirical data or formal methods for the elicitation of expert judgment, as 212 

described in our example. For those non-dominated actions that cannot be discriminated at 213 

the first order, SSD adds an assumption about the general shape of the utility function 214 

(concave or convex).  215 

In this sense, SD is advantageous since it does not require the definition of complete utility 216 

functions, which can be problematic for complex outcomes and non-monetary values. 217 

Moreover, since utilities represent the preferences of individuals, the extent to which they can 218 

be compared and aggregated is disputed (Eisenberg 1961). This can present a problem for 219 

conservation, where decisions often involve multiple stakeholders. For example, there may be 220 

little meaning in comparing the utility functions elicited from a group of stakeholders; 221 

however, the same group might reach a consensus about general risk-aversion, and such a 222 

simple definition is sufficient for a test of SSD. A general definition of risk aversion may also 223 
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intuitively represent situations in which the preferences of decision-makers are dictated by 224 

mandates (such as institutional commitments to the precautionary principle). The main 225 

limitation to the use of SD is the difficulty of interpreting higher orders. Computational 226 

intensity may be limiting for large-dimensional problems with hundreds of competing 227 

actions; however, in our case numerical integration for SSD required only 2 minutes on a 228 

standard desktop computer (see Post 2003 for a more detailed discussion). 229 

The specification of risk attitudes might be seen by some as an unnecessary complication. 230 

Pannell (2006) found “flat payoffs” to be predominant in agricultural production: the 231 

outcomes of different actions are similar enough that deviating from the mathematically 232 

optimal action (the one with the best expected outcome for the chosen criterion, such as 233 

expected value) will have little effect on utility across a considerable range of candidate 234 

actions, and risk attitudes will be essentially irrelevant. When verified for conservation 235 

decisions, as exemplified by our case study, the existence of flat payoffs reinforces the appeal 236 

of SD as a simple decision-support tool. Rather than discovering the irrelevance of 237 

uncertainty after eliciting utility functions, SD can be used to discriminate actions by simply 238 

comparing their cumulative distributions. This makes it applicable to any decision problem in 239 

which predicted outcomes can be expressed as distributions. 240 

In our example, risk-averse and risk-seeking decision-makers would choose different actions; 241 

yet both would be rational under their respective attitudes. Unless the uncertainty surrounding 242 

outcomes is expressed and risk attitudes are approached transparently, such conflicts may not 243 

be resolved. Consider for example the debate concerning conservation triage (Joseph et al. 244 

2008). Proponents of triage apply rational decision making to find the set of management 245 

actions that maximize the number of species conserved: this might imply that species with 246 

little chance of recovery may be less likely to be allocated resources (Bottrill et al. 2009). 247 
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Critics of triage argue that allocation of resources should allow for currently unforeseen 248 

breakthroughs that may eventually allow recovery (Jachowski and Kesler 2009), even if this 249 

means a greater chance of poorer overall returns by spreading resources over a larger set of 250 

species. It is possible that the two sides cannot agree because of fundamentally different risk 251 

attitudes. Tulloch et al. (2015) found that lower risk tolerance by managers would in fact 252 

reduce the total number of species protected, since efforts would concentrate on species in 253 

more imminent danger of extinction, which would however require greater concentration of 254 

resources. Future research could investigate risk attitudes in other areas of conservation (such 255 

as assisted colonization; Seddon et al. 2009), and explore violations of the assumption of 256 

rational decision making that is fundamental to expected utility theory and stochastic 257 

dominance (e.g. Tversky and Kahneman 1981).  258 

Recognizing that decisions reflect utility, rather than expected outcomes alone, reveals that 259 

the definition of risk depends on preferences, and does not simply coincide with predicted 260 

outcomes. Importantly, the preferences that influence conservation decisions may go beyond 261 

those of conservation scientists or managers, also reflecting the values of the public or other 262 

stakeholders, adding to the challenge of explicitly defining subjective values. However, if 263 

such explicit definitions can be established, managers can then take full advantage of 264 

quantitative predictive tools that incorporate the full range of probabilistic uncertainty. 265 

Stochastic dominance provides a relatively simple tool to assist conservation decisions in the 266 

face of uncertainty and risk. Its adoption could provide benefits to conservation managers at 267 

two levels. First, it requires definitions of uncertainty and risk that are transparent both 268 

quantitatively and semantically. Second, it allows a rigorous comparison of the predicted 269 

outcomes of possible actions with open recognition of risk. 270 

 271 
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Figure legends 368 

Figure 1. Panel (a) represents a hypothetical lottery with a decision between three alternative 369 

actions with different outcomes (numbers of species preserved) depending on success (with 370 

probabilities indicated by branch labels). Expected outcomes are calculated as the mean of 371 

possible outcomes weighted by their respective probabilities (e.g., for action A 372 

6×0.5+2×0.5=4). Panel (b) represents the utility functions of risk-averse, risk-neutral and 373 

risk-seeking decision makers as indicated by labels. 374 
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Figure 2. Elicited distributions of expected outcomes for the Litoria spenceri example, 383 

expressed as the probability of persistence of the species. The two panels correspond to the 384 

two uncertainty scenarios considered, respectively (a) known and (b) uncertain success of the 385 

ex-situ establishment phase. Actions indicate doing nothing (1), full in-situ management of 386 

the existing population only (2), supplementation of the existing population with full in-situ 387 

management (3), reintroduction to a new site with no further management (4) and 388 

reintroduction to a new site and full in-situ management of all populations (5). 389 
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Figure 3. Cumulative density functions of the distributions of expected outcomes for L. 397 

spenceri, calculated by numerical integration of the distributions in Fig. 2. Where CDFs do 398 

not cross first-order stochastic dominance exists: for example, in panel (a) Action 5 399 

dominates all other actions at the first order of SD. 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 



 

 

 
This article is protected by copyright. All rights reserved. 
  
  

Figure 4. Second-order stochastic dominance for the outcomes for L. spenceri, in the 410 

scenario of uncertain success of the ex-situ establishment phase. Curves represent the 411 

integrals of the CDFs depicted in Figure 3b. Panel (a) and (b) show, respectively, ascending 412 

SSD for a risk-averse decision-maker and descending SSD for a risk-seeking decision-maker. 413 

 414 

 415 

 416 

 417 

 418 


