2,358 research outputs found

    El concepto actual de la diabetes sacarina

    Get PDF

    Neutrinoless double-beta decay. A brief review

    Full text link
    In this brief review we discuss the generation of Majorana neutrino masses through the see-saw mechanism, the theory of neutrinoless double-beta decay, the implications of neutrino oscillation data for the effective Majorana mass, taking into account the recent Daya Bay measurement of theta_13, and the interpretation of the results of neutrinoless double-beta decay experiments.Comment: 22 page

    Physics Potential of Very Intense Conventional Neutrino Beams

    Get PDF
    The physics potential of high intensity conventional beams is explored. We consider a low energy super beam which could be produced by a proposed new accelerator at CERN, the Super Proton Linac. Water Cherenkov and liquid oil scintillator detectors are studied as possible candidates for a neutrino oscillation experiment which could improve our current knowledge of the atmospheric parameters and measure or severely constrain the parameter connecting the atmospheric and solar realms. It is also shown that a very large water detector could eventually observe leptonic CP violation. The reach of such an experiment to the neutrino mixing parameters would lie in-between the next generation of neutrino experiments (MINOS, OPERA, etc) and a future neutrino factory.Comment: Talk given at the Venice Conference on Neutrino Telescopes, Venice, March, 200

    Summary of Golden Measurements at a ν\nu-Factory

    Get PDF
    The precision and discovery potential of a neutrino factory based on muon storage rings is summarized. For three-family neutrino oscillations, we analyze how to measure or severely constraint the angle θ13\theta_{13}, CP violation, MSW effects and the sign of the atmospheric mass difference Δm232\Delta m^2_{23}. The appearance of ``wrong-sign muons'' at three reference baselines is considered: 732 km, 3500 km and 7332 km. We exploit the dependence of the signal on the neutrino energy, and include as well realistic background estimations and detection efficiencies. The optimal baseline turns out to be OO(3000 km).Comment: 7 pages, Latex2e, 5 eps figures, use package espfi

    Resolving parameter degeneracies in long-baseline experiments by atmospheric neutrino data

    Full text link
    In this work we show that the physics reach of a long-baseline (LBL) neutrino oscillation experiment based on a superbeam and a megaton water Cherenkov detector can be significantly increased if the LBL data are combined with data from atmospheric neutrinos (ATM) provided by the same detector. ATM data are sensitive to the octant of θ23\theta_{23} and to the type of the neutrino mass hierarchy, mainly through three-flavor effects in e-like events. This allows to resolve the so-called θ23\theta_{23}- and sign(Δm312\Delta m^2_{31})-parameter degeneracies in LBL data. As a consequence it becomes possible to distinguish the normal from the inverted neutrino mass ordering at 2σ2\sigma CL from a combined LBL+ATM analysis if sin22θ130.02\sin^2 2\theta_{13} \gtrsim 0.02. The potential to identify the true values of sin22θ13\sin^2 2\theta_{13} and the CP-phase δcp\delta_{cp} is significantly increased through the lifting of the degeneracies. These claims are supported by a detailed simulation of the T2K (phase II) LBL experiment combined with a full three-flavor analysis of ATM data in the HyperKamiokande detector.Comment: 25 pages, 10 figure

    Golden measurements at a neutrino factory

    Get PDF
    The precision and discovery potential of a neutrino factory based on muon storage rings is studied. For three-family neutrino oscillations, we analyse how to measure or severely constraint the angle θ13\theta_{13}, CP violation, MSW effects and the sign of the atmospheric mass difference Δm232\Delta m^2_{23}. We present a simple analytical formula for the oscillation probabilities in matter, with all neutrino mass differences non-vanishing, which clarifies the subtleties involved in disentangling the unknown parameters. The appearance of ``wrong-sign muons'' at three reference baselines is considered: 732 km, 3500 km, and 7332 km. We exploit the dependence of the signal on the neutrino energy, and include as well realistic background estimations and detection efficiencies. The optimal baseline turns out to be O(3000{\cal O}(3000 km). Analyses combining the information from different baselines are also presented.Comment: 45 pages, Latex2e, 24 figures using epsfig.sty. An incorrect statement and a few misprints have been corrected. Results and conclusions are unchange
    corecore