2,349 research outputs found
Characterization of Thin Pixel Sensor Modules Interconnected with SLID Technology Irradiated to a Fluence of 2\,n/cm
A new module concept for future ATLAS pixel detector upgrades is presented,
where thin n-in-p silicon sensors are connected to the front-end chip
exploiting the novel Solid Liquid Interdiffusion technique (SLID) and the
signals are read out via Inter Chip Vias (ICV) etched through the front-end.
This should serve as a proof of principle for future four-side buttable pixel
assemblies for the ATLAS upgrades, without the cantilever presently needed in
the chip for the wire bonding.
The SLID interconnection, developed by the Fraunhofer EMFT, is a possible
alternative to the standard bump-bonding. It is characterized by a very thin
eutectic Cu-Sn alloy and allows for stacking of different layers of chips on
top of the first one, without destroying the pre-existing bonds. This paves the
way for vertical integration technologies.
Results of the characterization of the first pixel modules interconnected
through SLID as well as of one sample irradiated to \,\neqcm{}
are discussed.
Additionally, the etching of ICV into the front-end wafers was started. ICVs
will be used to route the signals vertically through the front-end chip, to
newly created pads on the backside. In the EMFT approach the chip wafer is
thinned to (50--60)\,m.Comment: Proceedings to PSD
Aging of Gaseous Detectors: assembly materials and procedures
Abstract Aging of gaseous detectors is known as the degradation of their performance under the exposure to ionizing radiation. It is a complex phenomenon that depends on many parameters. Among others, aging depends on the gas mixture and may be enhanced by the presence of pollutants in the gas. The origin of the impurities is diverse and includes outgassing from assembly materials and the gas system components, and contamination of the detector during the assembly process. Systematic studies on this topic have been carried out. Methods used to ascertain the outgassing properties of materials are described and compared. Materials that might be used for assembling gaseous detectors and associated gas systems are catalogued according to their outgassing rate. Some factors affecting the aging rate in some fast gases are presented. Finally, a set of recommendations to build and operate gaseous detectors in high luminosity experiments is given
HV/HR-CMOS sensors for the ATLAS upgrade—concepts and test chip results
In order to extend its discovery potential, the Large Hadron Collider (LHC) will have a major upgrade (Phase II Upgrade) scheduled for 2022. The LHC after the upgrade, called High-Luminosity LHC (HL-LHC), will operate at a nominal leveled instantaneous luminosity of 5× 1034 cm−2 s−1, more than twice the expected Phase I . The new Inner Tracker needs to cope with this extremely high luminosity. Therefore it requires higher granularity, reduced material budget and increased radiation hardness of all components. A new pixel detector based on High Voltage CMOS (HVCMOS) technology targeting the upgraded ATLAS pixel detector is under study. The main advantages of the HVCMOS technology are its potential for low material budget, use of possible cheaper interconnection technologies, reduced pixel size and lower cost with respect to traditional hybrid pixel detector. Several first prototypes were produced and characterized within ATLAS upgrade R&D effort, to explore the performance and radiation hardness of this technology.
In this paper, an overview of the HVCMOS sensor concepts is given. Laboratory tests and irradiation tests of two technologies, HVCMOS AMS and HVCMOS GF, are also given
Radiation-hard active pixel sensors for HL-LHC detector upgrades based on HV-CMOS technology
Luminosity upgrades are discussed for the LHC (HL-LHC) which would make updates to the detectors necessary, requiring in particular new, even more radiation-hard and granular, sensors for the inner detector region.
A proposal for the next generation of inner detectors is based on HV-CMOS: a new family of silicon sensors based on commercial high-voltage CMOS technology, which enables the fabrication of part of the pixel electronics inside the silicon substrate itself.
The main advantages of this technology with respect to the standard silicon sensor technology are: low material budget, fast charge collection time, high radiation tolerance, low cost and operation at room temperature.
A traditional readout chip is still needed to receive and organize the data from the active sensor and to handle high-level functionality such as trigger management. HV-CMOS has been designed to be compatible with both pixel and strip readout.
In this paper an overview of HV2FEI4, a HV-CMOS prototype in 180 nm AMS technology, will be given. Preliminary results after neutron and X-ray irradiation are shown
The design and performance of the ATLAS Inner Detector trigger for Run 2 LHC Collisions at √s=13 TeV
Optimization of design and beam test of microstrip gas chambers
We describe recent experimental and theoretical work aimed at optimizing the geometry and the operation of micro-strip gas chambers in order to improve their performance and reliability. With the help of a simulation program, we have studied the mechanism of signal propagation and analyzed the effects on signal shape and size of resistivity of strips, grouping of biased strips and presence of a back-plane. Several detectors manufactured according to the results of the study and equipped with fast amplifiers have been installed in a test beam to study general operating characteristics, efficiency and localization accuracy; preliminary results of the data analysis are discussed
Aging Studies for the Large Honeycomb Drift Tube System of the Outer Tracker of HERA-B
The HERA-B Outer Tracker consists of drift tubes folded from polycarbonate
foil and is operated with Ar/CF4/CO2 as drift gas. The detector has to stand
radiation levels which are similar to LHC conditions. The first prototypes
exposed to radiation in HERA-B suffered severe radiation damage due to the
development of self-sustaining currents (Malter effect). In a subsequent
extended R&D program major changes to the original concept for the drift tubes
(surface conductivity, drift gas, production materials) have been developed and
validated for use in harsh radiation environments. In the test program various
aging effects (like Malter currents, gain loss due to anode aging and etching
of the anode gold surface) have been observed and cures by tuning of operation
parameters have been developed.Comment: 14 pages, 6 figures, to be published in the Proceedings of the
International Workshop On Aging Phenomena In Gaseous Detectors, 2-5 Oct 2001,
Hamburg, German
The Outer Tracker Detector of the HERA-B Experiment. Part II: Front-End Electronics
The HERA-B Outer Tracker is a large detector with 112674 drift chamber
channels. It is exposed to a particle flux of up to 2x10^5/cm^2/s thus coping
with conditions similar to those expected for the LHC experiments. The
front-end readout system, based on the ASD-8 chip and a customized TDC chip, is
designed to fulfil the requirements on low noise, high sensitivity, rate
tolerance, and high integration density. The TDC system is based on an ASIC
which digitizes the time in bins of about 0.5 ns within a total of 256 bins.
The chip also comprises a pipeline to store data from 128 events which is
required for a deadtime-free trigger and data acquisition system. We report on
the development, installation, and commissioning of the front-end electronics,
including the grounding and noise suppression schemes, and discuss its
performance in the HERA-B experiment
The Outer Tracker Detector of the HERA-B Experiment Part I: Detector
The HERA-B Outer Tracker is a large system of planar drift chambers with
about 113000 read-out channels. Its inner part has been designed to be exposed
to a particle flux of up to 2.10^5 cm^-2 s^-1, thus coping with conditions
similar to those expected for future hadron collider experiments. 13
superlayers, each consisting of two individual chambers, have been assembled
and installed in the experiment. The stereo layers inside each chamber are
composed of honeycomb drift tube modules with 5 and 10 mm diameter cells.
Chamber aging is prevented by coating the cathode foils with thin layers of
copper and gold, together with a proper drift gas choice. Longitudinal wire
segmentation is used to limit the occupancy in the most irradiated detector
regions to about 20 %. The production of 978 modules was distributed among six
different laboratories and took 15 months. For all materials in the fiducial
region of the detector good compromises of stability versus thickness were
found. A closed-loop gas system supplies the Ar/CF4/CO2 gas mixture to all
chambers. The successful operation of the HERA-B Outer Tracker shows that a
large tracker can be efficiently built and safely operated under huge radiation
load at a hadron collider.Comment: 28 pages, 14 figure
Prototype ATLAS IBL Modules using the FE-I4A Front-End Readout Chip
The ATLAS Collaboration will upgrade its semiconductor pixel tracking
detector with a new Insertable B-layer (IBL) between the existing pixel
detector and the vacuum pipe of the Large Hadron Collider. The extreme
operating conditions at this location have necessitated the development of new
radiation hard pixel sensor technologies and a new front-end readout chip,
called the FE-I4. Planar pixel sensors and 3D pixel sensors have been
investigated to equip this new pixel layer, and prototype modules using the
FE-I4A have been fabricated and characterized using 120 GeV pions at the CERN
SPS and 4 GeV positrons at DESY, before and after module irradiation. Beam test
results are presented, including charge collection efficiency, tracking
efficiency and charge sharing.Comment: 45 pages, 30 figures, submitted to JINS
- …