2 research outputs found

    Characterization of Demolished Concretes with Three Different Strengths for Recycling as Coarse Aggregate

    Get PDF
    This paper presents a physical characterization for the recycling into new concretes of three comminuted concretes: C16/20 (“ordinary concrete”), C50/60 (“high strength concrete”), and C70/85 (“very high strength concrete”). The top size of the crushed concretes was 19.1 mm and the size range was 4.75 to 19.1 mm. The characterization was carried out with coarse aggregate liberation, to be prepared and concentrated in a gravity concentration process. The density distribution of the coarse aggregate, cement paste, and sand was carried out in different size ranges (4.75/19.1 mm; 4.75/8.0 mm; 8.0/12.5 mm; and 12.5/19.1 mm) for the three concretes studied. The form factor of the samples, as well as the porosity determination of particles in different density ranges, are presented. The obtained results indicate that the coarse aggregate liberation was more intensive for the low resistance concrete (C16/20), but a reasonable coarse aggregate recovery is possible for all concretes

    Diario de Menorca: Año 5 Número 1031

    Get PDF
    The use of solid waste for the development of new building materials has been an alternative to reduce environmental impacts through the preservation of natural resources. In this context, this paper evaluates the possibility of using agate gemstone waste, called rolled powder, which basically consists of silica (SiO2), in the manufacture of aerated foamed concrete blocks completely replacing the natural sand. Preformed foam was used as the air entrained by mechanical stirring with a mixture of natural foaming agents derived from coconut. To produce test specimens, the water/cement ratio and foam concentrations were varied, with three and four levels, respectively. The specimens were left for 28 days at room temperature to be cured, and then underwent analysis to determine their compressive strength, density, and the distribution of air-voids. The experiments demonstrated that the best water/cement ratio was 1.28 for 18% (of total solid mass) addition of foam, which generated a sample with a density of 430 kg/m3, and a compressive strength of 1.07 MPa. The result for compressive strength is 11% smaller than the requirements of the Brazilian standard (NBR 13438) for autoclaved aerated concrete blocks, but the results are promising
    corecore