1,173 research outputs found

    A remark on the matrix Airy function

    Full text link
    An integral representation for matrix Airy function is presentedComment: 4 page

    Effectiveness of Quercetin and Its Derivatives Against SARS CoV2 -In silico Approach

    Get PDF
    The COVID-19 pandemic that erupted in November 2019 is continuing, with no effective antiviral agent to date. Synthetic antiviral agents have limitations such as a narrow range of therapeutic effectiveness of the activity, toxicity, and resistant viral strains and traditional antiviral medicines at large seem not to have these limitations. Here, some of the existing phytochemicals are cherry-picked for repurposing against the enzyme or protein targets of SARS CoV2, by the principles of structure-based drug design based on molecular docking studies. The most important drug targets of SARS CoV2 namely, Mpro protease (6LU7), RdRp polymerase (7BTF), and Spike glycoprotein of SARS CoV2(6VSB) were employed for docking analysis with chosen phytochemicals and binding affinity was calculated using PRODIGY software and docking sites determined using Chimera software. For docking studies, 160 phytochemicals were selected from a large pool of phytochemicals. Based on the binding affinity values, 61 phytoconstituents were selected for further in-silico screening which resulted in 15 phytochemicals, with higher binding affinity to spike glycoprotein of SARS CoV2. Moreover, Guaijaverin, Quercetin, Quercitrin, Quinic acid, and spiraeoside binds both to the spike glycoprotein of SARS Cov2 and the host receptor of human ACE2. Hence these compounds may serve as two-pronged drug candidates for SARS CoV2. In nutshell, we present a few phytochemical candidates with higher binding affinity to the Spike protein of SARS CoV2, which needs to be further optimized by in vitro studies to minimize the cytotoxicity and increase or retain the binding affinity, towards an effective antiviral drug against COVID 19

    Docosahexaenoic acid supplementation: a need or a commercial hype?

    Get PDF
    Docosahexaenoic acid (DHA) is an important component of the brain and is essential critical for optimal brain health and function. With revealing of its beneficial effects on cognitive function, neurological, cardiovascular system and anti-inflammatory benefits, DHA has recently gained huge attention. As a result, the market is stocked with products supplemented with DHA claiming various health benefits. This review attempts to elucidate the current findings of DHA supplementation as a pharmacological agent with both preventive and therapeutic value

    Development of pinned electrode for magnetic tunnel junction with perpendicular magnetic anisotropy

    Get PDF
    The magnetic electrodes with perpendicular magnetic anisotropy (PMA) have gained a great deal of attention in magnetic information storage technology. The use of perpendicular magnetic tunnel junctions (p-MTJs) enhances the storage density due to the reduction in area required for a unit bit. Among two electrodes in a MTJ structure (ferromagnetic/insulator/ferromagnetic), one electrode should be fixed or pinned to a specific direction of magnetization in order to have a unidirectional magnetic anisotropy with higher exchange field. This can be achieved by a phenomenon of exchange bias observed between the ferromagnetic (FM) and the anti-ferromagnetic (AFM) materials as a shift in a hysteresis loop when they are deposited in a presence of an external applied field

    A Sub-Type of Familial Pancreatic Cancer: Evidence and Implications of Loss-of-Function Polymorphisms in Indoleamine-2,3-Dioxygenase-2.

    Get PDF
    BACKGROUND: Variation in an individual\u27s genetic status can impact the development of pancreatic ductal adenocarcinoma; however, the majority of familial pancreatic cancers (FPC) cannot yet be attributed to a specific inherited mutation. We present data suggesting a correlation between loss-of-function single nucleotide polymorphisms (SNPs) in an immune regulator gene, indoleamine-2,3-dioxygenase-2 (IDO2), and an increased risk of FPC. STUDY DESIGN: Germline DNA from patients who underwent resection for pancreatic ductal adenocarcinoma (n = 79) was sequenced for the IDO2 SNPs R248W and Y359Stop. Genotypes resulting in inactivation of IDO2 (Y325X homozygous, R248W homozygous) were labeled as homozygous, and the other genotypes were grouped as wild-type or heterozygous. Genotype distributions of each SNP were analyzed for Hardy-Weinberg deviation. A genotype frequency set from the 1000 Genomes Project (n = 99) was used as a genetic control for genotype distribution comparisons. RESULTS: A significant 2-fold increase in the overall prevalence of the Y359Stop homozygous genotype compared with the expected Hardy-Weinberg equilibrium was noted (p \u3c 0.05). Familial pancreatic cancer was noted in 15 cases (19%) and comparison of the FPC cohort set to the genetic control set showed a 3-fold increase in Y359Stop homozygous rates (p = 0.054). Overall in our cohort, the homozygous genotype group was associated with increased risk of FPC (odds ratio 5.4; 95% CI 1.6 to 17.6; p \u3c 0.01). Sex, age at diagnosis, and history of tobacco use were not found to be significantly associated with FPC. CONCLUSIONS: Our preliminary data suggest a strong association between the IDO2 inactivating Y359Stop SNP and an increased risk of FPC when compared with the control group. Future studies will evaluate the value of IDO2 genotyping as a prognostic, early detection marker for pancreatic ductal adenocarcinoma and a predictive marker for novel immune checkpoint therapies

    Effect of okra plant resistance on transmission rate of okra enation leaf curl virus by its vector whitefly, Bemisia tabaci

    Get PDF
    The present study aimed to investigate the effect of age of the okra plants that showed varying whitefly resistance responses on the transmission rate of okra enation leaf curl virus (OELCV) by its vector whitefly Bemisia tabaci. The OELCV infected whitefly adults were collected from whitefly colonies and were challenged on the test okra accessions (Upl mona 2, Co 1, Arka anamika and AE 64) of differential ages which were individually caged (7, 10 and 15 d after germination) with glass chimney and the number of such whiteflies used were at the rate of 2, 4, 6, 8, 10, 12, 14 and 20 adults per plant. Observations were made on the virus symptom expression 30 d after challenge. The efficiency of transmission was determined. The efficiency of transmission of OELCV was the highest (maximum T and P*, 0.80, 1.00 and 0.08, 0.10) when 7 d old seedlings were inoculated (Arka anamika and AE 64 respectively) and transmission had decreased as the age of seedlings increased. The estimated transmission rate for single whitefly (P*) increased with an increase in the number of whiteflies used per plant. Okra plant resistance to B. tabaci significantly changed the transmission rates of OELCV on okra. Understanding the resistance mechanisms of the okra accessions and interactions between plant viruses and their insect host can pave the way for novel approaches to protect plants from virus infection

    Biochemical Changes during Plantlet Regeneration in Two Accessions of Mucuna pruriens

    Get PDF
    The genus Mucuna is an important medicinal herb and is extensively used in traditional Indian systems of medicine for various ailments. In vitro culture technique provides an alternative to plant propagation and germplasm conservation. Our aim was to study the biochemical changes occurring during regeneration of shoots (plantlets) from explants of two accessions of Mucuna pruriens, by monitoring the efficiency of nitrogen utilization and changes in levels of some hydrolytic enzymes. A rapid micropropagation system was developed using Murashige and Skoog's (MS) medium supplemented with BAP and IAA combined. In both the accessions, 3.0mg l-1 6-BAP, in combination with 0.2mg l-1 IAA, induced shoot buds and shoot elongation; however for multiple-shoot induction, a slightly higher concentration of cytokinin, i.e., 3.5mg l-16-BAP, in combination with 0.2mg l-1 IAA, was required. Results of the present study confirm an active growth of explants revealed by nitrate assimilation enzymes and hydrolytic enzymes. It is concluded that medium composition, growth regulator combination and culture incubation conditions are all vital in both the accessions of Mucuna pruriens for induction of in vitro plant regeneration

    Explicit solution of the quantum three-body Calogero-Sutherland model

    Get PDF
    Quantum integrable systems generalizing Calogero-Sutherland systems were introduced by Olshanetsky and Perelomov (1977). Recently, it was proved that for systems with trigonometric potential, the series in the product of two wave functions is a deformation of the Clebsch-Gordan series. This yields recursion relations for the wave functions of those systems. In this note, this approach is used to compute the explicit expressions for the three-body Calogero-Sutherland wave functions, which are the Jack polynomials. We conjecture that similar results are also valid for the more general two-parameters deformation introduced by Macdonald.Comment: 10 page

    Supersymmetric Extensions of Calogero--Moser--Sutherland like Models: Construction and Some Solutions

    Full text link
    We introduce a new class of models for interacting particles. Our construction is based on Jacobians for the radial coordinates on certain superspaces. The resulting models contain two parameters determining the strengths of the interactions. This extends and generalizes the models of the Calogero--Moser--Sutherland type for interacting particles in ordinary spaces. The latter ones are included in our models as special cases. Using results which we obtained previously for spherical functions in superspaces, we obtain various properties and some explicit forms for the solutions. We present physical interpretations. Our models involve two kinds of interacting particles. One of the models can be viewed as describing interacting electrons in a lower and upper band of a one--dimensional semiconductor. Another model is quasi--two--dimensional. Two kinds of particles are confined to two different spatial directions, the interaction contains dipole--dipole or tensor forces.Comment: 21 pages, 4 figure

    The Higgs field and the ultraviolet behaviour of the vortex operator in 2+1 dimensions

    Full text link
    We calculate the change in the ultraviolet behaviour of the vortex operator due to the presence of dynamical Higgs field in both 2+1 dimensional QED and the 2+1 dimensional Georgi-Glashow model. We find that in the QED case the presence of the Higgs field leads at the one loop level to power like correction to the propagator of the vortex operator. On the other hand, in the Georgi-Glashow model, the adjoint Higgs at one loop has no affect on the vortex propagator. Thus, as long as the mass of the Higgs field is much larger than the gauge coupling constant, the ultraviolet behaviour of the vortex operator in the Georgi-Glashow model is independent of the Higgs mass.Comment: 14 page
    corecore