1,196 research outputs found

    Synergistic effect induced by gold nanoparticles with polyphenols shell during thermal therapy: Macrophage inflammatory response and cancer cell death assessment

    Get PDF
    Background: In recent decades, gold nanoparticle (Au NP)-based cancer therapy has been heavily debated. The physico-chemical properties of AuNPs can be exploited in photothermal therapy, making them a powerful tool for selectively killing cancer cells. However, the synthetic side products and capping agents often induce a strong activation of the inflammatory pathways of macrophages, thus limiting their further applications in vivo. Methods: Here, we described a green method to obtain stable polyphenol-capped AuNPs (Au NPs@polyphenols), as polyphenols are known for their anti-inflammatory and anticancer properties. These NPs were used in human macrophages to test key inflammation-related markers, such as NF-κB, TNF-α, and interleukins-6 and 8. The results were compared with similar NPs obtained by a traditional chemical route (without the polyphenol coating), proving the potential of Au NPs@polyphenols to strongly promote the shutdown of inflammation. This was useful in developing them for use as heat-synergized tools in the thermal treatment of two types of cancer cells, namely, breast cancer (MCF-7) and neuroblastoma (SH-SY5Y) cells. The cell viability, calcium release, oxidative stress, HSP-70 expression, mitochondrial, and DNA damage, as well as cytoskeleton alteration, were evaluated. Results: Our results clearly demonstrate that the combined strategy markedly exerts anticancer effects against the tested cancer cell, while neither of the single treatments (only heat or only NPs) induced significant changes. Conclusions: Au NP@polyphenols may be powerful agents in cancer treatment

    Voriconazole is safe and effective as prophylaxis for early and late fungal infections following allogeneic hematopoietic stem cell transplantation

    Full text link
    Seventy-two patients undergoing allogeneic transplantation were treated with voriconazole (VOR) as antifungal prophylaxis starting from day −2 of transplantation and continuing until withdrawal of immunosuppression. Patients were assessed for safety and the incidence of definite, probable, or possible fungal infection throughout transplantation was evaluated. VOR was well tolerated. Only 14% of patients required interruption of VOR therapy because of toxicity: liver toxicity (8%), cardiac Q –T interval prolongation (1%), or other side effects (5%). In the early post-transplant period (120 days), no patients developed probable or definite fungal infection while receiving VOR. No Candida infections were seen in either period. These data suggest that fungal prophylaxis with VOR following allogeneic transplantation is safe and effective.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73360/1/j.1399-3062.2009.00455.x.pd

    Principales promotores utilizados en la transformación genética de plantas

    Get PDF
    El conocimiento pleno de los promotores determina el éxito en la obtención de nuevos cultivares de plantas a través de técnicas biotecnológicas, ya que dicha secuencia del ADN regula la transcripción de otras regiones adyacentes o cercanas, encontrándose los siguientes promotores: constitutivos, tejido-específicos o estadio-específicos, inducibles y sintéticos. En esta revisión se resume de manera precisa los conceptos, ventajas y limitaciones de los distintos tipos de promotores, con ejemplos claros de ello.Palabras clave: promotor, biotecnología vegetal, transcripción genética.Full knowledge of promoters determines success in obtaining new plant cultivars through biotechnology techniques. This DNA sequence regulates the transcription of adjacent or nearby regions, which are mainly constitutive, tissue-specific or stage-specific, inducible and synthetic. This review summarizes the precise concepts, advantages and limitations of different types of promoters, including clear examples of them.Key words: Promoter; plant biotechnology; gene transcription

    The Impact of Bacteria Exposure on the Plasmonic Response of Silver Nanostructured Surfaces

    Full text link
    Silver, especially in the form of nanostructures, is widely employed as an antimicrobial agent in a large range of commercial products. The origin of the biocidal mechanism has been elucidated in the last decades, and most likely originates from silver cation release due to oxidative dissolution followed by cellular uptake of silver ions, a process that causes a severe disruption of bacterial metabolism and eventually leads to eradication. Despite the large number of works dealing with the effects of nanosilver shape/size on the antibacterial mechanism and on the (bio)physical chemistry pathways that drive bacterial eradication, little effort has been devoted to the investigation of the silver NPs plasmon response upon interaction with bacteria. Here we present a detailed investigation of the bacteria-induced changes of the plasmon spectral and dynamical features after exposure to one of the most studied bacterial models, Escherichia Coli. Ultrafast pump-probe measurements indicate that the dramatic changes on particle size/shape and crystallinity, which stem from a bacteria-induced oxidative dissolution process, translate into a clear modification of the plasmon spectral and dynamical features. This study may open innovative new avenues in the field of biophysics of bio-responsive materials, with the aim of providing new and reliable biophysical signatures of the interaction of these materials with complex biological environments
    • …
    corecore