290 research outputs found

    Aprotic sulfur-metal batteries: lithium and beyond

    Get PDF
    Metal-sulfur batteries constitute an extraordinary research playground that ranges from fundamental science to applied technologies. However, besides the widely explored Li-S system, a remarkable lack of understanding hinders advancements and performance in all other metal-sulfur systems. In fact, similarities and differences make all generalizations highly inconsistent, thus unavoidably suggesting the need for extensive research explorations for each formulation. Here we review critically the most remarkable open challenges that still hinder the full development of metal-S battery formulations, starting from the lithium benchmark and addressing Na, K, Mg, and Ca metal systems. Our aim is to draw an updated picture of the recent efforts in the field and to shed light on the most promising innovation paths that can pave the way to breakthroughs in the fundamental comprehension of these systems or in battery performance

    Effects of ohmic heating on technological properties of whole egg

    Get PDF
    The aim of this work was to study the effects of different ohmic heating conditions on color, rheology, foaming, and gelling properties of whole egg. Industrial products treated by conventional heat pasteurization and the corresponding raw materials were also evaluated. Ohmic treatments accomplished in a static cell (65.5 \ub0C 73 min, 70 \ub0C 71 min, and 67 \ub0C 74.5 min) increased whole egg apparent viscosity (up to 190%), but also foam overrun (up to 28%) and gel hardness (up to 15%). The performance improvement was confirmed by treatments carried out in a continuous pilot plant (71 \ub0C 70.6 min, 68 \ub0C 71.4 min) and the products resulted stable during storage at 4 \ub0C for 30 days. In conclusion, this study demonstrated that ohmic heating is a suitable alternative to conventional pasteurization. Low temperature treatments are preferable to avoid possible rheological issues due to protein denaturation. Industrial relevance: Whole egg is a protein ingredient with multiple technological properties, used in many foods. Due to safety reasons, food manufacturers often use pasteurized liquid egg products, microbiologically safer and easier to handle with respect to shell eggs. In order to satisfy the required sanitary levels for liquid egg products, thermal pasteurization treatments are needed. However, since egg proteins are very sensitive to high temperatures, attention must be paid to avoid coagulation entailing deleterious effects against egg quality. In this study, different ohmic heating treatments were evaluated as milder alternatives to conventional pasteurization. The lab- and pilot-scale experiments and the subsequent statistical analyses of the obtained results contributed to assess the effects of the different ohmic treatments on technological features (e.g. color, rheology, foaming, and gelling properties) of liquid whole egg. This study demonstrated that ohmic heating is a suitable technology for whole egg treatment, paving the way for new opportunities in order to produce safe food ingredients with improved technological functionalities

    3D AUDIO-VISUAL SPEAKER TRACKING WITH AN ADAPTIVE PARTICLE FILTER

    Get PDF
    reserved4siWe propose an audio-visual fusion algorithm for 3D speaker tracking from a localised multi-modal sensor platform composed of a camera and a small microphone array. After extracting audio-visual cues from individual modalities we fuse them adaptively using their reliability in a particle filter framework. The reliability of the audio signal is measured based on the maximum Global Coherence Field (GCF) peak value at each frame. The visual reliability is based on colour-histogram matching with detection results compared with a reference image in the RGB space. Experiments on the AV16.3 dataset show that the proposed adaptive audio-visual tracker outperforms both the individual modalities and a classical approach with fixed parameters in terms of tracking accuracy.Qian, Xinyuan; Brutti, Alessio; Omologo, Maurizio; Cavallaro, AndreaQian, Xinyuan; Brutti, Alessio; Omologo, Maurizio; Cavallaro, Andre

    Audio-visual tracking of concurrent speakers

    Get PDF
    Audio-visual tracking of an unknown number of concurrent speakers in 3D is a challenging task, especially when sound and video are collected with a compact sensing platform. In this paper, we propose a tracker that builds on generative and discriminative audio-visual likelihood models formulated in a particle filtering framework. We localize multiple concurrent speakers with a de-emphasized acoustic map assisted by the image detection-derived 3D video observations. The 3D multimodal observations are either assigned to existing tracks for discriminative likelihood computation or used to initialize new tracks. The generative likelihoods rely on color distribution of the target and the de-emphasized acoustic map value. Experiments on AV16.3 and CAV3D datasets show that the proposed tracker outperforms the uni-modal trackers and the state-of-the-art approaches both in 3D and on the image plane

    Super hygroscopic non-stoichiometric cerium oxide particles as electrode component for PEM fuel cells

    Get PDF
    The design of highly efficient promoters for the oxygen reduction reaction (ORR) is an important challenge in the large-scale distribution of proton exchange membrane (PEM) fuel cells. Hygroscopic cerium oxide (CeO2) is here proposed as co-catalyst in combination with Pt. Physical chemical characterizations, by means of X-ray diffraction, vibrational spectroscopy, morphological and thermal analyses, were carried out, demonstrating high water affinity of the synthesized CeO2 nanoparticles. Composite catalysts (i. e., Pt : CeO2 1 : 0.5 and 1 : 1 wt:wt), were studied by either rotating disk electrode (RDE) and fuel cell tests performed at 80 °C and 110 °C. Interestingly, the cell adopting the Pt : CeO2 1 : 0.5 catalyst enabled the achievement of high power densities reaching ∼80 and ∼35 mW cm−2 under low relative humidity and high temperatures. This result demonstrates that tuning material surface properties (e. g. oxygen vacancies) could significantly boost the electrochemical performance of cathodes as a combined result of optimized water retention and improved ORR kinetic

    Deciphering the Interplay between Binders and Electrolytes on the Performance of Li4Ti5O12 Electrodes for Li-Ion Batteries

    Get PDF
    Lithium titanium oxide (Li4Ti5O12, LTO) is an attractive negative electrode for the development of safe-next-generation-lithium-ion batteries (LIBs). LTO can find specific applications complementary to existing alternatives for LIBs thanks to its good rate capability at high C-rates, fast lithium intercalation, and high cycling stability. Furthermore, LIBs featuring LTO electrodes are inherently safer owing to the LTO's operating potential of 1.55 V vs. Li+/Li where the commonly used organic-based electrolytes are thermodynamically stable. Herein, we report the combined use of water-soluble sodium alginate (SA) binder and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-tetraglyme (1m-T) electrolyte and we demonstrate the improvement of the electrochemical performance of LTO-based electrodes with respect to those operating in conventional electrolyte 1M LiPF6-ethylene carbonate: dimethyl carbonate (LP30). We also tackle the analysis of the impact of combining the binder/electrolyte on the long-term cycling performance of LTO electrodes featuring SA or conventional polyvinylidene fluoride (PVdF) as binders. Therefore, to assess the impact of the combination of binder/electrolyte on performance, we performed post-mortem characterization by ex situ synchrotron diffraction experiments of LTO electrodes after cycling in LP30 and 1m-T electrolytes

    Clinical experience with power-injectable PICCs in intensive care patients

    Get PDF
    Introduction: In the ICU, peripherally inserted central catheters (PICCs) may be an alternative option to standard central venous catheters, particularly in patients with coagulation disorders or at high risk for infection. Some limits of PICCs (such as low flow rates) may be overcome with the use of power-injectable catheters.Methods: We retrospectively reviewed all of the power-injectable PICCs inserted in adult and pediatric patients in the ICU during a 12-month period, focusing on the rate of complications at insertion and during maintenance.Results: We collected 89 power-injectable PICCs (in adults and in children), both multiple and single lumen. All insertions were successful. There were no major complications at insertion and no episodes of catheter-related bloodstream infection. Non-infective complications during management were not clinically significant. There was one episode of symptomatic thrombosis during the stay in the ICU and one episode after transfer of a patient to a non-intensive ward.Conclusion: Power-injectable PICCs have many advantages in the ICU: they can be used as multipurpose central lines for any type of infusion including high-flow infusion, for hemodynamic monitoring, and for high-pressure injection of contrast media during radiological procedures. Their insertion is successful in 100% of cases and is not associated with significant risks, even in patients with coagulation disorders. Their maintenance is associated with an extremely low rate of infective and non-infective complications. © 2012 Pittiruti et al.; licensee BioMed Central Ltd

    High fidelity numerical fracture mechanics assisted by RBF mesh morphing

    Get PDF
    The study and design of cyclically loaded structures cannot neglect the evaluation of their fatigue behavior. Today numerical prediction tools allow adopting, in various industrial fields, refined and consolidated procedures for the assessment of cracked parts through analyses based on fracture mechanics. An high level of detail can be obtained through the use of well consolidated FEM methods, allowing an accurate and reliable calculation of the flaw Stress Intensity Factor (SIF) and its resulting prediction in terms of crack propagation. A challenging step for this computational workflow remains, however, the generation and update of the computational grid during crack evolution. It is in this context that radial basis functions (RBF) mesh morphing is emerging as a viable solution to replace the complex and time-consuming remeshing operation. The flaw front is updated, according to its propagation, by automatically deforming the numerical grid obtaining an evolutionary workflow suitable to be used for industrially-sized numerical meshes (many millions of nodes). A review of applications, obtained by exploiting FEA (Ansys Mechanical) and mesh morphing (RBF Morph) state of-the-art tools, is presented in this work. At first the proposed workflow is applied on a circular notched bar with a defect controlled by a two-parameters evolution. The same approach is then refined and demonstrated for a Multi Degree of Freedom (MDoF) case on the same geometry and on the vacuum vessel port stub from the fusion nuclear reactor Iter

    Multi-speaker tracking from an audio-visual sensing device

    Get PDF
    Compact multi-sensor platforms are portable and thus desirable for robotics and personal-assistance tasks. However, compared to physically distributed sensors, the size of these platforms makes person tracking more difficult. To address this challenge, we propose a novel 3D audio-visual people tracker that exploits visual observations (object detections) to guide the acoustic processing by constraining the acoustic likelihood on the horizontal plane defined by the predicted height of a speaker. This solution allows the tracker to estimate, with a small microphone array, the distance of a sound. Moreover, we apply a color-based visual likelihood on the image plane to compensate for misdetections. Finally, we use a 3D particle filter and greedy data association to combine visual observations, color-based and acoustic likelihoods to track the position of multiple simultaneous speakers. We compare the proposed multimodal 3D tracker against two state-of-the-art methods on the AV16.3 dataset and on a newly collected dataset with co-located sensors, which we make available to the research community. Experimental results show that our multimodal approach outperforms the other methods both in 3D and on the image plane
    • …
    corecore