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ABSTRACT: Metal—sulfur batteries constitute an extraordinary research
playground that ranges from fundamental science to applied technologies.
However, besides the widely explored Li-S system, a remarkable lack of
understanding hinders advancements and performance in all other metal—
sulfur systems. In fact, similarities and differences make all generalizations
highly inconsistent, thus unavoidably suggesting the need for extensive
research explorations for each formulation. Here we review critically the
most remarkable open challenges that still hinder the full development of
metal-S battery formulations, starting from the lithium benchmark and
addressing Na, K, Mg, and Ca metal systems. Our aim is to draw an updated
picture of the recent efforts in the field and to shed light on the most promising
innovation paths that can pave the way to breakthroughs in the fundamental
comprehension of these systems or in battery performance.
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ince their introduction on the market in the early 1990s,

lithium-ion batteries have become the performance

benchmark for any further radical improvements in the
field of electrochemical energy storage.' Alternative battery
chemistries, such as Na-ion,” K-ion,>" Mg-Ion,5 Ca-ion,® Al-
ion,””? and Zn-ion,'® as well as the exploitation of lithium metal
plating/stripping at the negative electrodes'' coupled with
intercalation at positive electrodes'” or conversion at O, gaseous
electrodes,”” have been proposed, explored, demonstrated,
debated, and in some cases criticized'*'* in the past 30 years. An
enormous scientific effort is currently in progress worldwide to
identify how different technologies can find effective applica-
tions in specific niche fields, thus replacing the current
ubiquitous Li-ion battery benchmark.'®™"

In the past 10 years, the exploration of innovative chemistries
for the exploitation of sulfur as the positive electrode active
material in aprotic batteries has experienced a remarkable
boom.””**7*" Among all the possible variants, the Li-S
formulation is the most advanced one and has been already
demonstrated in pre-commercial prototypes.'”*"** There are
several advantages in the technological shift from lithium-ion
battery chemistry to lithium—sulfur in terms of the volumetric
and gravimetric specific energies and specific capacities as well as
the costs. The theoretical gravimetric and volumetric specific
capacities of a Li-S cell (1167 mAh g™ and 1216 mAh mL™,
normalized by the masses and volumes of the active materials at
both electrodes) are respectively 11 and 3 times larger compared
to the LiCoO,/graphite benchmarks or 7 and 2 times larger
compared to a hypothetical advanced Li-ion battery formulation
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of LiFePO,/silicon. Furthermore, a qualitative estimate of the
costs of active materials in Li-S batteries (Li ~2.2 € g'; S ~0.04
€ g7!)*° suggests figures close to the Li-ion formulations
(LiCoO, ~1.3 € g'; LiFePO, ~1.3 € g”'; graphite ~0.03 € g™';
silicon ~0.34 € g™'), thus making the energy stored per € of
active materials, i.e., expressed in terms of Wh €,4,,~", much more
favorable for the sulfur-based battery chemistry compared to the
Li-ion benchmark. This favorable landscape is partially counter-
balanced by the remarkable volume variation that affects the Li-S
active materials upon charge/discharge, i.e., ~ =33% of volume
upon discharge, compared to the small changes occurring in any
Li-ion battery formulation (—8% and —11% on discharge in the
LiCoO,/graphite and LiFePO,/silicon cases, respectively).”"**
This huge change in the active materials’ volumes between the
charged and discharged states of Li-S batteries unavoidably
requires volume buffers inside the electrode architectures,°
thus reducing the net density, deteriorating the volumetric
performance, and increasing the energy cost. Overall, the
successful commercialization of Li-S batteries requires finding
an optimal balance among performance, long-term calendar life,
and cost that is able to overcome the current Li-ion benchmark.
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Figure 1. Comparisons among the theoretical features of different competitive battery chemistries. (a) Comparison between the Li-S battery
chemistry and two Li-ion benchmarks: LiFePO,/Si and LiCoO,/graphite. (b) Comparison between the Li-S battery chemistry and the two
monovalent ones, Na-S and K-S. (c) Comparison between the Li-S battery chemistry and the three multivalent ones, Mg-S, Ca-S, and Al-S. (d)
Comparison of the maximum percentage of combined volume change suffered by both active materials between charge and discharge (the
dashed line is the benchmark +33% volume change suffered simultaneously at the positive and negative sides of a Li-S cell in charge).

However, Li-S is not the only aprotic sulfur-based battery
chemistry currently in the spotlight in fundamental research
worldwide: also Na-S, K-S, Mg-S, Ca-S, and Al-S battery
chemistries are currently challenging the battery research
field.”*>*>*737%% To shed some light on this, the same
comparative analysis outlined above for the Li-S case can be
drawn also in these cases, thus highlighting the comparative
merits of each battery chemistry. In Figure 1, the performance
features and energy costs per active material mass are compared
to the Li-ion and Li-S benchmarks, as well as the maximum
volume variation suffered simultaneously by both active
materials between charge/discharge. All quantities in the radar
plots in panels (a)—(c) are in relative units benchmarked to (i)
the gravimetric capacity of the Li-S battery chemistry (i.e., 1167
mAh ¢! normalized by the sum of the masses of both active
materials), (ii) the volumetric capacity of the Al-S battery
chemistry (i.e., 2484 mAh mL™' normalized by the weighted
sum of molar volumes of both active materials), (iii) the
gravimetric energy of the Li-S battery chemistry (i.e., 2612 mWh
¢! normalized by the sum of the masses of both active
materials), (iv) the volumetric energy of the Ca-S battery
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chemistry (i.e, 3244 mWh mL™' normalized by the weighted
sum of molar volumes of both active materials), and (v) the
energy stored per € of active materials of the Mg-S battery
chemistry (i.e., 16.1 Wh ¢! normalized by the estimated cost of
the sum of the masses of both active materials).

Opverall, all the sulfur-based battery chemistries overcome
both Li-ion benchmarks in all the theoretical performance
figures and costs, with the only exception being the volumetric
energy density of the K-S case. On the contrary, compared to the
Li-S benchmark, the landscape is nuanced and requires a case-
by-case discussion.

The Li-S battery chemistry largely outperforms both of the
monovalent Na-S and K-S ones. However, the lower cost of
sodium metal compared to lithium makes the energy stored per
€ of active materials more favorable in the Na-S battery
formulation.

The same applies also for the multivalent Mg-S and Al-S cases,
where the theoretical energy stored per € of active materials is
respectively 4 and 2 times higher compared to the Li-S case
thanks to the lower costs of Mg and Al. Generally speaking,
multivalent sulfur—metal chemistries can also provide better
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theoretical volumetric performance compared to Li-S, thanks to
the higher densities of the metals. In fact, the specific volumetric
capacities of Al-S, Mg-S, and Ca-§ are respectively 2, 1.5, and 1.1
times larger than that of Li-S, whereas the volumetric energy
densities of both Ca-S and Mg-S are ~1.2 times higher than that
of Li-S. Overall, multivalent metal—sulfur battery chemistries
overcome the Li-S benchmark in both costs and volumetric
performance.

On the other hand, all Na-, K-, Mg-, and Ca-S battery
chemistries suffer huge overall volume variation between
charge/discharge considering both electrodes, as outlined in
Figure 1d, approximately doubling the figures of the volume
shrinking/expansion in the Li-S case. This is a remarkable
drawback, as it necessarily requires the identification of
strategies to handle the huge volume variation. On the opposite
side, the Al-S case is remarkably better even compared to the Li-
S one: apparently the theoretical electrodes’ simultaneous
volume variation in discharge is limited to ~ —11%, a value 3
times smaller with respect to Li-S, thus matching the lithium-ion
LiFePO,/silicon case. This remarkable feature originates from
beneficial opposite trends of the active materials’ densities
compared to the other metals and metal sulfides: in fact, Al,S,;
has a lower density compared to all the other sulfides, whereas Al
has a higher density compared to all other alkaline or alkaline-
earth metals.

All sulfur-based battery chemistries
overcome both Li-ion benchmarks in all
the theoretical performance figures
and costs.

Given this promising and intriguing landscape, here we
discuss critically the current understandings and technological
demonstrations of metal—sulfur battery chemistries beyond the
Li-S ones, thus including Na-S, K-S, Mg-S, Ca-S, and the
remarkable Al-S.

B REDOX MECHANISM AND KEY CHALLENGES

Sulfur-based compounds have been extensively studied as high-
capacity positive electrodes to be coupled with metal in metal—
sulfur batteries. Although most of the research activity in the
field has been focused on Li-based sulfur batteries, sulfur
electrodes have also found applications with anodes different
from the Li metal, such as others alkali metals (e.g,, Na and K)
and also multivalent metals (e.g, Ca, Mg, and Al). Generally
speaking, an aprotic sulfur—metal battery is constituted by a
porous composite positive electrode with a high content of
sulfur (or sulfides), an aprotic electrolyte (either solid or liquid),
and a negative metal electrode. Different from conventional
intercalation/de-intercalation compounds, the electrochemical

reaction in metal-S batteries at the positive electrode is the
conversion of the elemental sulfur Sg to the respective metal
sulfide upon reduction, and the opposite on oxidation.

The fundamental theoretical features of the redox chemistry
for different metal—sulfur cells are summarized in Table 1,
including the theoretical operational voltage and the related
gravimetric and volumetric energy densities. The Li-S battery
chemistry has the largest gravimetric energy density; however,
when considering the volumetric energy density, Ca and Mg
outperform lithium, as well as AL In contrast, Na-S and K-S cell
chemistries show the smallest values. Despite the poor
theoretical features compared to Li-S, however, the theoretical
features of Na-S and K-S also outperform those of commercial
Li-ion batteries (see above).

A pictorial representation of the most crucial points in the
electrochemical reduction/oxidation of sulfur in aprotic metal
cells and the positive electrode voltage profiles reported
experimentally for all six metals, Li, Na, K, Mg, Ca, and Al are
shown in Figure 2. A detailed review of the most relevant aspects
of the redox reactions in Li-S batteries is provided in the
Supporting Information (SI); here we focus on the electro-
chemistry of beyond-lithium metal—sufur cells.

The electrochemical conversion of sulfur using different
metallic counter-electrodes shares many similarities with the
mechanism proposed in Li-S batteries (see the SI, section
“Redox mechanism and key challenges in Li-S batteries”).
However, the differences in the ionic sizes and physicochemical
properties of the metal cations (e.g,, polarizabilities, charge
density, overall charge, electronegativity) can affect the reaction
path and the kinetics of the process, as outlined qualitatively by
the different shapes of the galvanostatic potential profiles shown
in Figure 2c. First of all, the thermodynamic stabilities of
polysulfides (PSs) are altered by the charge density and
polarizability of the positive counterions, and the donor number
(DN) of the electrolyte solvent further modifies the stability of
different PSs. This interplay leads to different reaction pathways
in the reduction/oxidation of sulfur in different metal/S cells. As
an example, by using operando UV-—vis techniques, the
alteration in the thermodynamic stability of PSs with respect
to cation size has been demonstrated experimentally, showing
that short-chain PSs are more stabilized by large cations (e.g.,
K*) than smaller ones (e.g., Mg?* and AI**).*>*” Further proof of
this has been obtained by operando XAS, UV—vis, and Raman
spectroscopy. ™"

Metal cation size also has a strong influence on the stability of
various crystalline solid metal sulfides. Indeed, while in Li-S cells
Li,S is the most stable solid product from cell discharge, Li,S,
being a metastable product, in K-S cells K,S; has a higher
thermodynamic stability than K,S (—582 kJ/mol vs —410 kJ/
mol), which makes the reduction reaction from K,S; to K,S
sluggish.”" This picture has been supported by different authors

Table 1. Comparison of the Fundamental Theoretical Features of Metal—Sulfur Batteries”

Cell type Theoretical redox reaction Thermodynamic emf (V)
Li-S 2Li + S = Li,S 2.6
Na-S 2Na + S = Na,§ 23
K-S 2K + S =K,S 2.5
Mg-S Mg + S = MgS 1.8
Ca-S Ca+S=CaS 2.4
Al-S 2Al1 + 3S = ALS; 1.1

Gravimetric energy density (Wh kg™")

Volumetric energy density (Wh L")

2612 2723
1262 1680

914 1149
1682 3195
1802 3244
1185 2747

“Gravimetric values are calculated with respect to the sum of the metal and sulfur masses.
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Figure 2. (a) Graphical outline of the conversion mechanism in Li-S batteries. (b) Challenges to the development of metal—sulfur batteries with
a focus on Li metal: improve the kinetics of conversion through lowering the energy barrier to polysulfide (PS) reduction and Li,S oxidation,
and reduce the PS shuttling by increasing the relative adsorption energies at the cathode. [Adapted with permission from ref 39. Copyright 2019
American Chemical Society.] (c) Experimental galvanostatic reduction/oxidation potential profiles of different metal—sulfur batteries. [Li:
Adapted with permission from ref 40. Copyright 2015 Royal Society of Chemistry. Na: Adapted with permission from ref 41. Copyright 2016
Elsevier. K: Adapted with permission from ref 42. Copyright 2018 Elsevier. Ca: Reproduced with permission from ref 26. Copyright 2020 The
Authors. Published by Wiley-VCH GmbH under Creative Commons license CC-BY 4.0. Mg: Adapted with permission from ref 43. Copyright
2016 American Chemical Society. Al: Adapted with permission from ref 44. Copyright 2019 Wiley.]

who confirmed the formation of K,S; phases at the end of
discharge.”>>* A similar unexpected mechanism is also observed
in Na-S cells, where the stable product of discharge is Na,S,
instead of Na,S.>* Differently, Ca, Mg, and Al follow the

expected mechanisms, as the stable products at the end of
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discharge are CaS and Mg and for Al the sesquisulfide
ALS,.*° Focusing on Ca-S, Scafuri and co-workers showed that
the reversible conversion of sulfur first to PS species and finally

to Ca$S proceeds at room temperature through the two well-
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defined plateaus, with a consistent part of the sulfur converted
into CaS at the end of the first discharge.””

Metal—sulfur batteries constitute an
extraordinary research playground that
ranges from fundamental science to
applied technologies.

All metal/S battery chemistries share similar drawbacks
compared to Li-S: (i) PSs are formed and dissolved in the
electrolyte; (i) the formation of soluble PSs feeds a “shuttle”
effect back and forth to the metal anode, wasting charge; and
(iii) the precipitation/accumulation of insulating layers is
promoted over the metal counter-electrodes. Compared to Li
polysulfides (LiPs), Na- and K-PSs (NaPs and KPs) are more
soluble in organic solvent-based electrolyte, with consequent
higher mobility and a more severe shuttle effect, causir g high
inefficiency between the discharge/charge process.”””® In
contrast, metal—sulfur batteries that exploit multivalent negative
electrodes (Mg, Ca, and Al) show limited formation of soluble
PSs and a reduced shuttle effect back and forth to the metal
anode. In particular, for Ca-S batteries, the occurrence of a
shuttle effect has been experimentally excluded by Scafuri and
co-workers.”” The main reason can be related to the solubility of
Mg**, Ca**, and AP’* PSs in organic solvent electrolyte, which is
lower than in alkali-based electrolyte, and also reduced mobility
of these species."”*®>” Remarkably, the alteration of the
electrochemical redox activity of sulfur impacts the reversibility
of the metal—sulfur battery: apparently Mg-S, Ca-S, and Al-S
cells are all free from the endless charges observed in Li-S, Na-S,
and K-S cells without an appropriate passivation film over the
metal surface (e.g., promoted by the degradation of sacrificial
lithium nitrite).***%°7~%°

As they do for Li, density functional theory (DFT)
simulations also provide deep insights into the mechanisms of
conversion of other metal-S batteries. Simulation of the
reduction reactions of Na- and Li-PS species on a V@WSe,
host highlighted that the rate-limiting step in the reduction of Na
shows a higher barrier to reduction but a lower barrier to
oxidation compared to Li, justifying the presence of Na,S, as the
only kinetic product.”’ As observed for Li, the use of vanadium
(V) as a single-atom catalyst dopant can improve the kinetics in
both reduction and oxidation by lowering the barriers of the
rate-limiting steps.’" Similar effects have been also predicted for
the use of a VS, anchoring material that, besides improving Na-
PS retention at the cathode, would decrease the thermodynamic
barriers to Na-PS reduction to Na,S, and Na,S and to
reoxidation.

DFT stability analysis of Mg-PS in Mg-S batteries predicts a
monotonic decrease of the energy of formation moving from
long-chain to short-chain Mg-PS (see Figure 2¢).°> A combined
experimental—theoretical work*® has demonstrated that the
capacity degradation in Mg-S cells with Mg(HMDS),—AICl,
electrolyte is due to the irreversible formation of discharge
products, e.g., MgS and Mg;S, through a direct electrochemical
deposition or a chemical disproportionation of intermediate
polysulfides. The same study highlights that an improvement in
the kinetics of the oxidation process can be obtained by using
TiS, as active electrocatalyst. Moving to Al-S batteries, Bhauriyal
et al. provided important details about the charging and
discharging processes in Al-S batteries by the analysis of
S4(001)/[EMIM]AICIS, and Al,S4(001)/[EMIM]AICIS, inter-
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facial systems by molecular dynamics simulations.”> The
discharging process can proceed through the continuous
reduction of S to Al,S;-like products via a series of polysulfide
intermediate species and involves the formation of various
cationic and anionic intermediate species.

B CHALLENGES FOR THE DEVELOPMENT OF A
RELIABLE POSITIVE ELECTRODE MATERIAL

Due to its insulating nature and the remarkable volume
expansion upon cycling, sulfur is used as an active electrode
material in blends with conductive and binder components. The
overall goal is to improve the interparticle cohesion between the
active material and the conductive particles as well as the
adhesion on the Al current collector.”® The most common
fundamental approaches to rationally draw on paper and
manufacture in the lab for sulfur-composite-based electrodes
are shown in Figure 3a. The most relevant strategies and
successful achievements in the design of innovative and effective
positive electrodes for Li-S batteries are broadly reviewed in the
SI (section “Challenges for the development of a reliable positive
electrode material in Li-sulfur batteries”); in this section we
focus on recent advancements to adapt the Li-S concepts to
beyond-lithium metal—sulfur formulations.

All beyond-lithium—sulfur battery chemistries face challenges
(e.g, PS solubility, shuttle effect) very similar to those already
tackled by many research groups for Li-S cells; thus, similar
concepts have been exploited to design and demonstrate
effective positive electrodes and cell formulations. A carbon-
based matrix has been the most used for room-temperature Na-S
systems; various morphologies have been proposed to enhance
the electron transfer, to facilitate the redox reactions, and to
prevent the dissolution of active material and consequent shuttle
effect.”” Coaxial carbon structures based on microporous carbon
sheaths embedded in carbon nanotubes have been designed to
accommodate sulfur, however not totally preventin§ dissolution
of Na-PSs in the electrolyte and capacity fading.”” The use of
hollow carbon (HC) substrate has also being proposed to
prevent shuttle effects: however, due to the radical spatial
confinement of sulfur, such electrodes fail to exploit the entire
capacity of sulfur.”*

In line with Li-S cells, carbon hosts have been re-designed to
promote large sulfur loading and PSs binding by the inclusion of
heteroatoms. 3D Ni-HC spheres concatenated in N-doped
carbon nanofibers have been proposed to enhance electro-
chemical kinetics and facilitate Na-PS adsorption on the
cathode, due to the formation of Ni—S bonds.”> DFT
simulations indicating the potential improvements in the
conversion kinetics have been also demonstrated in N-doped
graphene decorated with single-atom catalyst (Cr, Fe, Co). The
presence of the transition-metal catalyst, beyond enhancing the
interaction of Na-PS with the carbon matrix, also decreases the
barrier to decomposition (see Figure 3b).°* Experimentally, this
has been demonstrated by the use of transition-metal (Fe, Cu,
and Ni) nanoclusters on HC nanospheres, which have been
shown to provide good cycling stability through increasing the
Na-PS immobilization and activity (see Figure 3b).%°

Taking advantage of experience with Li-S batteries, metal—
organic framework (MOF) networks have also been demon-
strated in the design of electrodes suitable for Na-S cells. For
example, a zeolitic imidazolate framework, i.e, MOFs ZIF67
and/or ZIF8, can be used to design nitrogen-doped networks for
hosting sulfur active material in Na-S cells, reaching a stable
capacity of 500 mAh g~! for over 250 cycles.”® Polar groups can

https://doi.org/10.1021/acsenergylett.2c02493
ACS Energy Lett. 2023, 8, 1300—-1312


https://pubs.acs.org/doi/suppl/10.1021/acsenergylett.2c02493/suppl_file/nz2c02493_si_001.pdf
http://pubs.acs.org/journal/aelccp?ref=pdf
https://doi.org/10.1021/acsenergylett.2c02493?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Energy Letters http://pubs.acs.org/journal/aelccp

(a) Physical confinement Chemical absorption Kinetics accelerator

88;

‘8

Porous hosts Doped hosts; rGO Mxene; 3D conductive structures
$ 35 —
(b) Graphene I S T
3 25 » o 0] - NlSonFa@NG/—t\
o ~«- Na_S on Co@N |
& 20] S , €15 ) i3
c 1.5 | 4 = !i
Na,S Na,S, S 10 / g
5 S 05 W L
oo ¢ g2 0 20246 8101214

Decomposition path (A)

1000
o S@Fe-HC
"o 800 ° S@Cu-HC
2 s S@Ni-HC
£ 600
§ 400 )
& 200 Soe
0

0 100 200 300 400 500 600 700 800 900 1000
Cycle number

1.6/ ——S/SA-NC ( )
(c) Q: © El 5 s/ _c{.34 ev d 1200
% Pl o ~1000d .
5] & =0 . LT
208 5 o] Te een .
o Wdﬁ : anga®
H Z ao
go4 Mg w s i
300 S 4004
= };ﬁ _é:m S loading: In/en?
Reaction coordinate _ o &8
Separator \nsz 0 Cyele number »

s - . S NI
| x%%w ;{ﬁiﬁ%
\-wv _ ¢ TiS, substrate o TiS, gubsxrnte

40 80 120 160 200

1000 - ¢ 8CoNC - 60

(%) Aouaroyje aquomno)

Discharge ) SA@TISC,0,Ss | [SA@TC,0-ALS, [SA@T,C;,0-ALS,| [SA@THC,0-ALS,| |SA@TI,C;0,-AlS,
Shuttling H
Dead sulfurf ~ Al 1

| <))
H “ea)
! ‘.‘ U5 ma
. . - S - ASL = NSy = AS = AS, _
| Cathode Separator Anode ]oseay 2 - |==
122 - ={-122eV —n
H 2 - - - - - =0-- 1 R — —
i3 P Tt S— S-S R - A

Shuttling Reduced barrier ES1 6l L4 =y N P bt O - _=- - ore g" '\ = 4 = '; E:e;
:51; —TING SIAI ga-'_ . - S £\ =S =
] —SIAl - - - - “ \ B |2
1610 §, - - & \ - =
150.8 87 - i \ ==
108 - ? 3 - =
| 0.4 or . - R S — ==
/02 MRARARARRARARRRRNT =%

0 200 400 600 800 1000 ScPLV Cr MnFeCo Ni Cu Zn Y 2 NoMoTc RuRhPd AgCd ra - T T
Capacity (mAh g') Single atom

Figure 3. (a) Schemes of the fundamental morphological/structural concepts typically exploited to optimize the performance of a sulfur-
composite electrode. (b) Na-S battery: geometric configurations of Na-PS on N-doped graphene (NG) and Cr-SAC NG (Cr@NG); Na-PS
adsorption energies on Cr@NG, Fe@NG, and Co@NG; and relative barriers to decomposition. (Adapted with permission from ref 64.

1305 https://doi.org/10.1021/acsenergylett.2c02493
ACS Energy Lett. 2023, 8, 1300—-1312


https://pubs.acs.org/doi/10.1021/acsenergylett.2c02493?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c02493?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c02493?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c02493?fig=fig3&ref=pdf
http://pubs.acs.org/journal/aelccp?ref=pdf
https://doi.org/10.1021/acsenergylett.2c02493?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Energy Letters

http://pubs.acs.org/journal/aelccp

Focus Review

Figure 3. continued

Copyright 2021 American Chemical Society.) On the bottom right is shown the cycle performance of a sulfur cathode based on transition-metal
(M = Fe, Cu, and Ni) nanoclusters loaded onto hollow carbon (HC) nanospheres. [Adapted with permission from ref 65. Copyright 2019
Wiley.] (c) K-S battery: equilibrium structure, charge difference analysis, and barrier to dissociation of K,S on sulfur host based on Co single
atoms on N-doped carbon (SA-NC), with the relative cycling performance. [Adapted with permission from ref 66. Copyright 2021 American
Chemical Society.] (d) Mg-S battery: schematics of the Mg-S cell with a TiS,-coated separator that activates the decomposition of MgS, with the
related cycling performance of the Mg-S cell. [Adapted with permission from ref 62. American Chemical Society 2020.] (e) Left: schematics for
the working principle of a TiIN-NG:S//Al battery and relative charge/discharge profile. [Adapted with permission from ref 67. Copyright 2022
Elsevier.] Right: binding energies of Sg and ALS, PSs on different SA@Ti;C,0, nanosheets and relative free energy of conversion. [Adapted
with permission from ref 68. Copyright 2021 American Chemical Society.]

be used to modify carbon networks and enhance binding
energies with Na-PS through polar—polar interactions. For
example, carbon nanofibers can be modified using high sulfur
catalytic Fe-based species which can lower the Na,S oxidation
energy barrier, improving its reversibility and consequently the
cycling stability towards Na.”” Sulfides can also act as polar
catalysts in Na-S cells. An example is given by a composite
synthesized including MoS, in a nitrogen-doped carbon
network, which increased both capacity retention and rate
capability, with a Na-S cell able to deliver 360 mAh g~' for over
2800 cycles at 2C rate.”®

DFT calculations indicate that other sulfide compounds, such
as VS, and As,S;, show satisfactory binding energies vs Na-PS,
and they are able to mitigate the shuttle effects.””"" Similarly to
sulfides, nitrides such as Fe,N have been shown to catalyze the
Na-PS conversion.”’ The chemical and structural synergistic
immobilization of Na-PSs in the cathode structure has been
realized through the use of aluminum oxyhydroxide (AIOOH)
nanosheets decorated with a sulfur/carbon black nano-
composite (S@CB@AIOOH). A coupled experimental—the-
oretical work indicated that AIOOH catalyzes the redox
conversion of the higher-order PSs (Na,S,, 6 < n < 8) to the
lower-order PSs (Na,$S,, 1 <x <2), boosting the performance of
the conversion in Na-$ batteries.””

The use of M-Xene has been also proved in Na-S cells,
employing Ti;C,T, nanosheets as sulfur host material. The as-
synthesized composite showed reduced delivered capacity with
a good cycling stability, while the doping of M-Xene brought
about better cycling performance.”””"

Both Li-S and Na-S battery chemistries being at the center
stage of research in the past 10 years, a great number of electrode
configurations have been reported for both systems. DFT
calculations have been carried out on double-transition-metal
(DTM) MXenes, Mo, TiC,T, (T = O and S), by analyzing their
interactions with Sg/Na,S, (n =1, 2, 4, 6, and 8). Both of these
materials exhibit moderate Na-PS adsorption energies, and they
are expected to effectively inhibit Na,S, dissolution and
shuttling. Furthermore, the calculated Gibbs free energies of
the rate-determining step for sulfur reduction and the energy
barriers to Na,S decomposition are found to be significantly
lower than those in a vacuum, suggesting that the use of these
MXenes is beneficial in boosting both Na-PS reduction and
Na,$ reoxidation in discharge and charge, respectively.*”

Differently, research on electrode configurations for K-S or
cells with multivalent metals is more recent and in most cases
results in applications of electrodes previously developed for Na
and Li systems. Mesoporous carbon was used to develop the first
K-S cell,®® while the analyses were reported of a series of
different host materials based on PAN (polyacetonitrile),**
microporous carbon,® and carbon nanofibers.*® Ye et al.
reported a combined experimental—theoretical work on K,S
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oxidation on a sulfur host with Co single atoms (Co-SAC)
immobilized on nitrogen-doped carbon (NC). Apparently, a
synergistic beneficial effect originates from Co-S and N-K lateral
interactions and promotes the catalysis of the K,S oxidation.
Analysis of the barrier to decomposition calculated by DFT
shows that Co-SAC has a reduced transition-state energy,
significantly lower than that for NC, consistent with the better
cycling stability observed experimentally (see Figure 3c).°° As
for Li and Na, researchers started to apply hosts with higher
electronic conductivity, for example, those based on MXene;®’
however, sulfur-host-based graphene, oxide, and MOF networks
have yet to be applied in K-S systems.

Mg-S positive electrodes are typically based on open-scaffold
hosts with different porosity and surface area, like activated
carbon cloth,*® MOFs,* carbon black,”® and graphene.91 As
found with other metal—sulfur batteries, nitrogen doping of
carbon has been shown to be an effective strategy to increase
Mg-PS immobilization at the cathode and to improve the
sluggish kinetics of reduction.”” Similarly, M-Xene-based host
architectures, i.e., Co;S,@MXene and CoO-MXene, have been
shown to increase the Mg-PS retention by providing good Mg-
ion mobility with consequent beneficial effects on the reduction
kinetics.”” Mo,S, has been also used in Mg-S cells,” as well as
TiS,, that proved to be able to activate the conversion of low-
order MgS, and MgS, supplying up to 900 mAh-g~" with good
cycling retention (see Figure 3d).°” More generally, the concept
of the use of functionalized layers of separators to bind dispersed
PS has been proposed and demonstrated for Li-S cells,”* and it is
surely a valid strategy that can be applied to all metal—sulfur
formulations.

Turning to Ca-S cells, due to the lack of a reliable electrolyte,
the entire mechanism and positive electrode chemistry are less
understood; apparently both the shuttle effect and PS
dissolution are less pronounced compared to those in Li, Na,
and K systems. As far as we know, all reports about Ca-S cells
have exploited simple sulfur—carbon composites at the positive
side by applying mesoporous carbon materials.”” On the
contrary, in the case of Al-S systems, where the shuttle effect
of PS is remarkable, the majority of publications have exploited
sulfur host structures based, for example, on activated carbon,”®
MOFs,** M-Xenes,”® and doped graphene.®” Ai et al. developed
a TIN@N-doped graphene catalyst for use as the sulfur cathode
in Al-S batteries, which suppressed the Al-PS shuttle effect,
improved the redox kinetics, and reduced the decomposition
barrier, being able to deliver ~993 mAh g™ in the first cycle and
to maintain a capacity of ~500 mAh g~" after 200 cycles (see
Figure 3e).”” On the computational side, an extensive DFT
study was carried out by Wang et al. in order to unravel the
anchoring properties of SAC-decorated (SA@Ti;C,0,) M-
Xenes by screening several SAC metals. Their analysis showed
that SAC =Y, Nb, Mo, and Tc are potential candidates for high-
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Figure 4. (a) Schematic representation of a Na-S cell using a Nafion/polymer-based electrolyte and (b, c) the corresponding electrochemical
performance. [Adapted with permission from ref 100. Copyright 2015 Wiley.] (d) Pictorial scheme of the structure of a potassium superionic
conductor and (e, f) its experimental validation as a solid-state ceramic electrolyte in K-S batteries. [Adapted with permission from ref 24.

Copyright 2022 Wiley.]

performance cathodes, showing good adsorptlon energies for Al-
PS and low reaction barriers (see Figure 3e).®

B TOWARDS A SUITABLE ELECTROLYTE FOR
REVERSIBLE SULFUR ELECTROCHEMISTRY

As discussed in the previous sections and in the SI for Li-S cells,
extensive efforts have been devoted to the design of positive
electrode host matrices able to suppress the metal-PS species in
the electrolyte through the addition of doped-carbon and polar
materials with strong binding energies. Another approach to
suppress metal-PS shuttling is the development of electrolytes
able to suppress metal-PS dissolution based on tailored liquid
solutions, polymer membranes, or inorganic ceramic ionic
conductors. However, despite the good qualitative comprehen-
sion of the fundamental mechanism of PS dissolution, the
fundamental thermodynamics and kinetics of this bundle of
processes are still unknown. Particularly, the solubility of many
PSs in many solvents is not known, partly due to the difficulty to
isolate them, and their disproportionation and interconversion
are only poorly outlined in the literature.

Opverall, the key points to understand the behavior of PSs
within the electrolyte are (i) the way PS intermediates interact
with the solvent molecules and the metal-ion salt, (i) the effect
of salt addition on solvation structure and dynamics, and (iii) the
effect of PS chain length on the structure and dynamics.

Contrary to Li-S batteries, in Na-S batteries long-chain PS
dianions (n > 4) are thermally unstable and PS mainly exists as
radical monoanions, small dianions, and ion pairs (n =2 and 3).
According to DFT calculations, the primary reduction product
of Sg is the radical anion, which decomposes at the operating
temperature of Na-S batteries exoergonically to S,” and S;~
radicals together with the neutral species S¢ and S;, respectively.
The Sg~ radical is predicted to disproportionate to Sg and Sg*,
followed by the dissociation to two S,  radicals. By
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recombination reactions, these species further interact and
react. However, PS dianions larger than S,*” are thermally
unstable at 320 °C, and smaller dianions as well as radical
monoanions dominate in Na,S, (n = 2—5) melts instead.”

In line with the fundamental understanding of the role played
by the liquid electrolyte in aprotic liquid metal—sulfur batteries,
from the experimental point of view three major concepts of
electrolytes have been developed—sparingly solvating electro-
lyte (SSE), moderating solvating electrolyte (MSE), and highly
solvating electrolyte (HSE)—that can suppress and promote PS
conversion.”” A compact review of the most relevant achieve-
ments to develop effective electrolytes for Li-S cells is given in
the SI (section “Towards a suitable electrolyte for reversible Li-
sulfur electrochemistry”).

Moving to Na-S cells, electrolytes are mainly designed closely
matching those used in Li-S cells. Typical sodium salts used are
NaClO,, NaCF;SO;, and NaPF,, while organic solvents are
TEGDME, DOL/DME 1:1 mixture, and others glymes. As
already discussed, the most relevant drawback of the use of
liquid electrolytes with ethereal solvents is the high solubility of
Na-PS. As a consequence, in these electrolytes, the electro-
chemical kinetics of sulfur is maximized as well as the impact of
the shuttle effect of NaPS, with consequent poor reversibility.””
Similar to Li-S cells, also for Na-S, additives to the electrolytes
have been proposed to mitigate Na-PS shuttling. In one case
NaNO; was investigated but did not have the prolonged and
beneficial effect of LiNO; in Li-S cells.” Ionic-liquid-based
liquid electrolytes have also been proposed for Na-S cells and
showed good performance and cycling stablhtg , likely due to the
poor Na-PS solubility in highly ionic media.”

Regarding hybrid configurations, gel polymer electrolytes
have been investigated in different configurations, including
NaCF;SO; and/or NaClO, dissolved in ether-based electrolyte
and embedded in polyacrylonitrile nanofibers, poly(ethylene
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oxide), poly(vinylidene difluoride), and Nafion mem-
brane.'~'% These electrolyte configurations can achieve an
ionic conductivity of 107* or 107> S cm™ at room temperature
with an unavoidable loss in the overall Na-S cell performance.
On the other hand, the shuttle effect and Na-PS solubility are
strongly reduced.

Turning to solid-state-based electrolytes, polymer-based
systems have been demonstrated in metal-S batteries beyond
lithium; examples of the use of polymeric electrolytes for Na-S
batteries are shown in Figure 4a—c. Nafion-based electrolytes
apparently allow a good reversibility of the Na-S conversion
reactions (see Figure 4b). Voltage profiles are remarkably
altered compared to those with liquid electrolytes (see Figure
2¢) as the conversion mechanism in solid electrolytes mitigates
the formation of long-chain polysulfides, thus leading to
improvements in the delivered capacity compared to that in
liquid electrolytes (see Figure 4c).""

Solid-state room-temperature Na-S cells have also been
demonstrated using ceramic electrolytes; similarly to the case of
polymeric electrolytes, suppression of the Na-PS solubility
enhances the reversibility but the unavoidable small con-
ductivity hinders good rate performance.'”™'* Overall the
optimal configuration in solid-state electrolyte is obtained with a
Na-salt with a low lattice energy and a polymer with high
dielectric constant to improve its dissociation and the transport
of solvated Na* cations; in this way Na* cations are poorly bound
to counterions while polymers’ polar groups weakly coordinate
both anions and cations. Furthermore, the use of polymers offers
advantages of flexibility, good resistance in electrode volume
during cycling, shape modulation, and good interfacial contact.
A major disadvantage is the low electronic conductivity at room
temperature that requires increasing the operational temper-
ature, at least 60 °C, or increasing the amorphous phase in the
polymeric matrix.'”

Turning next to K-S electrochemistry, the research efforts still
being at early stages, all the proposed liquid electrolyte concepts
are still derived from the other Li-S and Na-S cell
chemistries.”>>*>>%*

Very recently a solid-state electrolyte able to prevent K-
dendrite formation has been proposed based on a W-doped
K,;SbS, superionic conductor (see Figure 4d—f). The high
conductivity of 1.4 X 107" S ecm™" at 40 °C, among the best
reported in the state-of-the-art, and the advantage of solid-state
electrolyte, blocking both K-dendrite growth and PS shuttle,
demonstrated the possibility of good cycling performance.'”’

Differently from the alkali metal—sulfur cells, the traditional
Grignard reagents and conventional magnesium ion electrolytes
are nucleophilic and not compatible with sulfur; thus, their
design cannot follow those reported for non-aqueous Mg-ion
batteries. In this respect the major drawback to building a stable
Mg-S cell lies in the difficult task of designing an appropriate
electrolyte. The first rechargeable Mg-S cell was reported in
2011 with the design of a non-nucleophilic electrolyte,
synthesized with AICl; and hexamethyldisilazide magnesium
chloride (HMDSMgCl).()0 Other more recent non-nucleophilic
Mg-electrolytes are still under development'*>'"” but in most
cases are still facing the unsatisfactory reversibility of the Mg
plating/stripping, and therefore their application to sulfur
electrodes is premature.

In line with magnesium, also the Ca-S electrochemistry faces
the lack of a reliable electrolyte for the Ca plating/stripping. A
first reported example of Ca-S electrolyte involved dissolving
Ca(ClO,), salt in CH;CN solvent. Despite delivering a good
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capacity, the Ca-S cell suffered from the continuous growth of a
passivation layer on the Ca surface, reducing the cycle life. This
drawback has been partially addressed recently by Manthiram
using a dual-cation electrolyte with lithium ions.””>> Very
recently, new complex electrolytes have been demonstrated for
the plating/stripping of calcium metal in aprotic media at room
temperature; hopefully, new experimental validations of these
formulations in Ca-S cells will soon appear in the relevant
literature.”"%®

Similarities and differences make gen-
eralizations in metal—sulfur batteries
highly inconsistent, thus suggesting
the unavoidable need for extensive
research exploration specific for each
formulation.

In passing it is important to mention that the development of
either Mg-S or Ca-S battery formulations requires tackling the
facile tendency towards the formation of ionically non-
conductive anodic passivation layers; this is a major factor that
can restrict electrolyte selection and optimization for both
systems.

Electrolytes are also a key challenge in Al-S batteries, as the
electrolytes designed for Li and Na based on organic solvents are
not suitable. A first example of an Al-S cell was reported in 2016
based on ionic-liquid electrolyte, i.e., 1-ethyl-3-methyl-
imidazolium chloride ([EMI]CI) and aluminum chloride
(AICL,), however with poor cycling performance.'” Generally
speaking, there is a relevant research activity towards the
identification of novel electrolytes for Al-ion batteries.''" It is
likely that these innovative formulations will find applications in
AI-S cells soon.

B METAL-SULFUR BATTERIES: A SUMMARY

The theoretical figures of the performance of metal—sulfur
batteries are extraordinary and promise the possiblity to develop
a variety of innovative battery chemistries, plausibly adapted to
the requirements for different applications. However, besides
the largely explored Li-S system, a remarkable lack of
understanding hinders advancement and effective performance
demonstration in all metal—sulfur systems. In fact, numerous
similarities and differences make all generalizations in metal—
sulfur batteries highly inconsistent, thus suggesting the
unavoidable need for extensive research exploration specific
for each formulation.

Opverall, general concepts are still valid, and the most relevant
challenges are similar:

1. the development of a composite electrode with high sulfur
loading, optimized buffer volumes, and excellent elec-
tronic conductivity;

2. the limitation of metallic PSs in the electrolyte; and

3. the protection of the metal surface by a strong limitation
of the shuttle effect.

Tuning the electrode meso-morphologies as well as the
surface composition and moieties is a key strategy to
simultaneously tackle all these challenges.

On the other hand, the impact of each of these open problems
is different in the different metal—sulfur formulations, in
particular due to the different thermodynamic landscape. In
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fact, molecular polysulfide stability and solubility compete with
the clusterization driving forces as well as with the thermo-
dynamic stability of the crystalline polysulfide. All these
thermodynamic features are unavoidably strongly altered by
the use of different metal counterions, with different polar-
izability, size, and charge density. Therefore, the development of
suitable innovative positive electrodes and electrolytes for
metal—sulfur batteries beyond lithium is still based on random
explorations or serendipity-driven intuition rather than a
rational understating of the thermodynamic and kinetic
fundamentals of these multinary systems. In particular a clear
comparative study of the thermodynamics of reduction/
oxidation of multi-phase systems with different metal—sulfur
compositions is missing, based either on purely macroscopic
thermodynamic modeling or on microscopic ab initio methods.
This lack of understanding is further weakened by the
unavailability of reliable models available to mimic the dynamics
and the reactivity of electrolyte/sulfur and metal/electrolyte
interfaces in multi-phase systems like in any metal—sulfur
battery. In this respect, wide and systematic computational and
experimental research efforts are strongly needed to shed light
on and rationalize the reactivity of the different metal—sulfur
systems at the positive electrode side as well as in the electrolyte.

As a last point of discussion, it is important to underline that
the success of these battery paradigms based on metal negative
electrodes also requires a highly reversible metal plating/
stripping process, in terms of almost unitary electrochemical and
chemical yields as well as in terms of good preservation of the
metal morphologies. In all metal—sulfur battery chemistries, this
last topic is marginally studied in comparison to positive
electrodes and electrolytes, as well as the analysis of formation
cycles, gas release, thermal/electrical/mechanical abuse, and
realistic cycle-life assessments. Thus, metal—sulfur batteries
constitute an extraordinary research playground that ranges
from fundamental science to applied innovations.
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