466 research outputs found

    Vortex length, vortex energy and fractal dimension of superfluid turbulence at very low temperature

    Full text link
    By assuming a self-similar structure for Kelvin waves along vortex loops with successive smaller scale features, we model the fractal dimension of a superfluid vortex tangle in the zero temperature limit. Our model assumes that at each step the total energy of the vortices is conserved, but the total length can change. We obtain a relation between the fractal dimension and the exponent describing how the vortex energy per unit length changes with the length scale. This relation does not depend on the specific model, and shows that if smaller length scales make a decreasing relative contribution to the energy per unit length of vortex lines, the fractal dimension will be higher than unity. Finally, for the sake of more concrete illustration, we relate the fractal dimension of the tangle to the scaling exponents of amplitude and wavelength of a cascade of Kelvin waves.Comment: 12 pages, 1 figur

    EFFICACY OF FINE NEEDLE ASPIRATION CYTOLOGY IN THE DIAGNOSIS OF THYROID LESIONS IN LIBYA

    Get PDF
    Objective: To assess the sensitivity, specificity, and accuracy of fine-needle aspiration cytology (FNAC) in the diagnosis of thyroid lesions, by comparing the results with histopathology diagnosis. Methods: A retrospective study was conducted during the years from 2006 to 2013. Patient data were collected and details of their thyroid lesion, including clinicopathological features and FNAC findings, were recorded. A total of 200 patients, who had a clinical thyroid lesion were subjected to concurrent FNAC and surgical intervention. Results: Out of a total of 200 patients, 51 cases had an FNAC that was unsatisfactory for evaluation. These patients were excluded from data analysis. The remaining 149 patients were included in the study. The results of the FNAC were compared with the tissue diagnosis obtained after surgical intervention. Out of 22 malignant lesions on surgical intervention, FNAC correctly diagnosed 12 and 9werediagnosed suspicious, and the remaining one was misdiagnosed as benign cytology. So false-negative being 1/22 (4.5%). Out of 66 patients diagnosed as follicular adenoma on histopathology results, FNAC picked 43 cases correctly as a benign smear. The remaining 23 cases of follicular adenoma diagnosed on histopathology were reported as suspicious on FNAC, whereas, out of 61 goiters, FNAC diagnosed 57 as benign cytology, 4 cases were suspicious as follicular neoplasia. The sensitivity and specificity of FNAC in the diagnosis of thyroid lesions were95.5% and78.7% respectively. Conclusion: Thyroid cytology is an effective and rapid method in the diagnosis of thyroid diseases. It helps in deciding which patient needs thyroidectomy. Negative cytology results do not exclude the possibility of malignancy, as there was a false negative rate of 5.4%

    Directing stem cell differentiation with antibodies

    Full text link

    Peptide Ligands for Pro-survival Protein Bfl-1 from Computationally Guided Library Screening

    Get PDF
    Pro-survival members of the Bcl-2 protein family inhibit cell death by binding short helical BH3 motifs in pro-apoptotic proteins. Mammalian pro-survival proteins Bcl-x[subscript L], Bcl-2, Bcl-w, Mcl-1, and Bfl-1 bind with varying affinities and specificities to native BH3 motifs, engineered peptides, and small molecules. Biophysical studies have determined interaction patterns for these proteins, particularly for the most-studied family members Bcl-x[subscript L] and Mcl-1. Bfl-1 is a pro-survival protein implicated in preventing apoptosis in leukemia, lymphoma, and melanoma. Although Bfl-1 is a promising therapeutic target, relatively little is known about its binding preferences. We explored the binding of Bfl-1 to BH3-like peptides by screening a peptide library that was designed to sample a high degree of relevant sequence diversity. Screening using yeast-surface display led to several novel high-affinity Bfl-1 binders and to thousands of putative binders identified through deep sequencing. Further screening for specificity led to identification of a peptide that bound to Bfl-1 with K[subscript d] < 1 nM and very slow dissociation from Bfl-1 compared to other pro-survival Bcl-2 family members. A point mutation in this sequence gave a peptide with ~50 nM affinity for Bfl-1 that was selective for Bfl-1 in equilibrium binding assays. Analysis of engineered Bfl-1 binders deepens our understanding of how the binding profiles of pro-survival proteins differ and may guide the development of targeted Bfl-1 inhibitors.National Institute of General Medical Sciences (U.S.) (Award GM084181)National Institute of General Medical Sciences (U.S.) (Award P50-GM68762

    A Weakly Supervised Approach for Semantic Image Indexing and Retrieval

    Full text link

    Semi-automated Magnetic Bead-Based Antibody Selection from Phage Display Libraries

    Get PDF
    Phage display of combinatorial antibody libraries is a very efficient method for selecting recombinant antibodies against a wide range of molecules. It has been applied very successfully for the generation of therapeutic antibodies for more than a decade. To increase robustness and reproducibility of the selection procedure, we developed a semi-automated selection method for the generation of recombinant antibodies from phage display libraries. In this procedure, the selection targets are specifically immobilised to magnetic particles which can then by automatically handled by a magnetic particle processor. At present up to 96 samples can be handled simultaneously. Applying the processor allows standardisation of panning parameters such as washing conditions, incubation times, or to perform parallel selections on same targets under different buffer conditions. Additionally, the whole protocol has been streamlined to carry out bead loading, phage selection, phage amplification between selection rounds and magnetic particle ELISA for confirmation of binding activity in microtiter plate formats. Until now, this method has been successfully applied to select antibody fragments against different types of target, such as peptides, recombinant or homologous proteins, or chemical compounds

    Identification and Characterization of Ixodes scapularis Antigens That Elicit Tick Immunity Using Yeast Surface Display

    Get PDF
    Repeated exposure of rabbits and other animals to ticks results in acquired resistance or immunity to subsequent tick bites and is partially elicited by antibodies directed against tick antigens. In this study we demonstrate the utility of a yeast surface display approach to identify tick salivary antigens that react with tick-immune serum. We constructed an Ixodes scapularis nymphal salivary gland yeast surface display library and screened the library with nymph-immune rabbit sera and identified five salivary antigens. Four of these proteins, designated P8, P19, P23 and P32, had a predicted signal sequence. We generated recombinant (r) P8, P19 and P23 in a Drosophila expression system for functional and immunization studies. rP8 showed anti-complement activity and rP23 demonstrated anti-coagulant activity. Ixodes scapularis feeding was significantly impaired when nymphs were fed on rabbits immunized with a cocktail of rP8, rP19 and rP23, a hall mark of tick-immunity. These studies also suggest that these antigens may serve as potential vaccine candidates to thwart tick feeding

    Construction and Analysis of High-Complexity Ribosome Display Random Peptide Libraries

    Get PDF
    Random peptide libraries displayed on the ribosome are becoming a new tool for the in vitro selection of biologically relevant macromolecules, including epitopes, antagonists, enzymes, and cell-surface receptors. Ribosome display is a cell-free system of coupling individual nascent proteins (phenotypes) to their corresponding mRNA (genotypes) by the formation of stable protein-ribosome-mRNA complexes and permitting the selection of a functional nascent protein by iterative cycles of panning and reverse transcription-polymerase chain reaction (RT-PCR) amplification in vitro. The complexity of the random peptide library is critical for the success of a panning experiment; greater the diversity of sequences within the library, the more likely it is that the library comprises sequences that can bind a given target with specific affinity. Here, we have used the cell-free system Escherichia coli S30 lysate to construct high-complexity random peptide libraries (>1014 independent members) by introducing strategies that are different from the methods described by Mattheakis et al. and Lamla et al. The key step in our method is to produce nanomole (nmol) amounts of DNA elements that are necessary for in vitro transcription/translation by using PCR but not plasmid DNA. Library design strategies and protocols that facilitate rapid identification are also presented

    Display of both N- and C-terminal target fusion proteins on the Aspergillus oryzae cell surface using a chitin-binding module

    Get PDF
    A novel cell surface display system in Aspergillus oryzae was established by using a chitin-binding module (CBM) from Saccharomyces cerevisiae as an anchor protein. CBM was fused to the N or C terminus of green fluorescent protein (GFP) and the fusion proteins (GFP-CBM and CBM-GFP) were expressed using A. oryzae as a host. Western blotting and fluorescence microscopy analysis showed that both GFP-CBM and CBM-GFP were successfully expressed on the cell surface. In addition, cell surface display of triacylglycerol lipase from A. oryzae (tglA), while retaining its activity, was also successfully demonstrated using CBM as an anchor protein. The activity of tglA was significantly higher when tglA was fused to the C terminus than N terminus of CBM. Together, these results show that CBM used as a first anchor protein enables the fusion of both the N and/or C terminus of a target protein
    corecore