369 research outputs found

    Scattering of Ultrasound (Including Rayleigh Waves) by Surface Roughness and by Single Surface Flaws. A Review of the Work Done at Paris 7 University

    Get PDF
    Since some years our team has worked on the characterization of rough surfaces from a study of the angular and frequency dependence of the backscattered intensity of ultrasonic waves. We shall discuss, in view of our experimental results, the different components of the signature of the surface profile which can be evaluated by these means: r.m.s. roughness h with a precision of the order of 1 μm in the range 6-100 μm influence of the autocorrelation distance L when present, surface periodicities with a precision which can be better than 1%. In the case of quasiperiodic surfaces, we shall present a comparison between the spectra theoretically predicted in the low-frequency approximation for various samples, and the ultrasonic spectra actually observed. Since 1977, we have also used Rayleigh waves to study surface properties and surface cracks in ceramics and metals and we shall give an introduction to the results obtained at the present time. This topic will be developed by B.R. Tittmann in a following paper

    Ultrasonic Characterization of Rough Cracks

    Get PDF
    It has been reported before that frequency and angular information from ultrasonic scattering can be used to characterize smooth artificial defects in metals. In this study ultrasonic measurements from fractured and smooth penny-shaped cracks of the same size were carried out. Experimental procedures included the use of broad band and narrow band ultrasonic signals. From angular and frequency dependence of ultrasonic scattering measurements the size, shape, orientation and rms roughness of the fractured surface have been estimated. Ultrasonic measurements of these parameters have been compared to the actual parameters of the defect

    Conduction of Ultracold Fermions Through a Mesoscopic Channel

    Full text link
    In a mesoscopic conductor electric resistance is detected even if the device is defect-free. We engineer and study a cold-atom analog of a mesoscopic conductor. It consists of a narrow channel connecting two macroscopic reservoirs of fermions that can be switched from ballistic to diffusive. We induce a current through the channel and find ohmic conduction, even for a ballistic channel. An analysis of in-situ density distributions shows that in the ballistic case the chemical potential drop occurs at the entrance and exit of the channel, revealing the presence of contact resistance. In contrast, a diffusive channel with disorder displays a chemical potential drop spread over the whole channel. Our approach opens the way towards quantum simulation of mesoscopic devices with quantum gases

    Bose-Einstein Condensate in Weak 3d Isotropic Speckle Disorder

    Get PDF
    The effect of a weak three-dimensional (3d) isotropic laser speckle disorder on various thermodynamic properties of a dilute Bose gas is considered at zero temperature. First, we summarize the derivation of the autocorrelation function of laser speckles in 1d and 2d following the seminal work of Goodman. The goal of this discussion is to show that a Gaussian approximation of this function, proposed in some recent papers, is inconsistent with the general background of laser speckle theory. Then we propose a possible experimental realization for an isotropic 3d laser speckle potential and derive its corresponding autocorrelation function. Using a Fourier transform of that function, we calculate both condensate depletion and sound velocity of a Bose-Einstein condensate as disorder ensemble averages of such a weak laser speckle potential within a perturbative solution of the Gross-Pitaevskii equation. By doing so, we reproduce the expression of the normalfluid density obtained earlier within the treatment of Landau. This physically transparent derivation shows that condensate particles, which are scattered by disorder, form a gas of quasiparticles which is responsible for the normalfluid component

    Three-dimensional localization of ultracold atoms in an optical disordered potential

    Full text link
    We report a study of three-dimensional (3D) localization of ultracold atoms suspended against gravity, and released in a 3D optical disordered potential with short correlation lengths in all directions. We observe density profiles composed of a steady localized part and a diffusive part. Our observations are compatible with the self-consistent theory of Anderson localization, taking into account the specific features of the experiment, and in particular the broad energy distribution of the atoms placed in the disordered potential. The localization we observe cannot be interpreted as trapping of particles with energy below the classical percolation threshold.Comment: published in Nature Physics; The present version is the initial manuscript (unchanged compared to version 1); The published version is available online at http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys2256.htm

    Integration of multiple platforms for the analysis of multifluorescent marking technology applied to pediatric GBM and dipg

    Get PDF
    The intratumor heterogeneity represents one of the most difficult challenges for the development of effective therapies to treat pediatric glioblastoma (pGBM) and diffuse intrinsic pontine glioma (DIPG). These brain tumors are composed of heterogeneous cell subpopulations that coexist and cooperate to build a functional network responsible for their aggressive phenotype. Understanding the cellular and molecular mechanisms sustaining such network will be crucial for the identification of new therapeutic strategies. To study more in-depth these mechanisms, we sought to apply the Multifluorescent Marking Technology. We generated multifluorescent pGBM and DIPG bulk cell lines randomly expressing six different fluorescent proteins and from which we derived stable optical barcoded single cell-derived clones. In this study, we focused on the application of the Multifluorescent Marking Technology in 2D and 3D in vitro/ex vivo culture systems. We discuss how we integrated different multimodal fluorescence analysis platforms, identifying their strengths and limitations, to establish the tools that will enable further studies on the intratumor heterogeneity and interclonal interactions in pGBM and DIPG

    A Green's function approach to transmission of massless Dirac fermions in graphene through an array of random scatterers

    Full text link
    We consider the transmission of massless Dirac fermions through an array of short range scatterers which are modeled as randomly positioned δ\delta- function like potentials along the x-axis. We particularly discuss the interplay between disorder-induced localization that is the hallmark of a non-relativistic system and two important properties of such massless Dirac fermions, namely, complete transmission at normal incidence and periodic dependence of transmission coefficient on the strength of the barrier that leads to a periodic resonant transmission. This leads to two different types of conductance behavior as a function of the system size at the resonant and the off-resonance strengths of the delta function potential. We explain this behavior of the conductance in terms of the transmission through a pair of such barriers using a Green's function based approach. The method helps to understand such disordered transport in terms of well known optical phenomena such as Fabry Perot resonances.Comment: 22 double spaced single column pages. 15 .eps figure

    Wernicke-Kleist-Leonhard phenotypes of endogenous psychoses: a review of their validity .

    Get PDF
    While the ICD-DSM paradigm has been a major advance in clinical psychiatry, its usefulness for biological psychiatry is debated. By defining consensus-based disorders rather than empirically driven phenotypes, consensus classifications were not an implementation of the biomedical paradigm. In the field of endogenous psychoses, the Wernicke-Kleist-Leonhard (WKL) pathway has optimized the descriptions of 35 major phenotypes using common medical heuristics on lifelong diachronic observations. Regarding their construct validity, WKL phenotypes have good reliability and predictive and face validity. WKL phenotypes come with remarkable evidence for differential validity on age of onset, familiality, pregnancy complications, precipitating factors, and treatment response. Most impressive is the replicated separation of high- and low-familiality phenotypes. Created in the purest tradition of the biomedical paradigm, the WKL phenotypes deserve to be contrasted as credible alternatives with other approaches currently under discussion.
    corecore