874 research outputs found
Non-Adiabatic Potential-Energy Surfaces by Constrained Density-Functional Theory
Non-adiabatic effects play an important role in many chemical processes. In
order to study the underlying non-adiabatic potential-energy surfaces (PESs),
we present a locally-constrained density-functional theory approach, which
enables us to confine electrons to sub-spaces of the Hilbert space, e.g. to
selected atoms or groups of atoms. This allows to calculate non-adiabatic PESs
for defined charge and spin states of the chosen subsystems. The capability of
the method is demonstrated by calculating non-adiabatic PESs for the scattering
of a sodium and a chlorine atom, for the interaction of a chlorine molecule
with a small metal cluster, and for the dissociation of an oxygen molecule at
the Al(111) surface.Comment: 11 pages including 7 figures; related publications can be found at
http://www.fhi-berlin.mpg.de/th/th.htm
Non-adiabatic Effects in the Dissociation of Oxygen Molecules at the Al(111) Surface
The measured low initial sticking probability of oxygen molecules at the
Al(111) surface that had puzzled the field for many years was recently
explained in a non-adiabatic picture invoking spin-selection rules [J. Behler
et al., Phys. Rev. Lett. 94, 036104 (2005)]. These selection rules tend to
conserve the initial spin-triplet character of the free O2 molecule during the
molecule's approach to the surface. A new locally-constrained
density-functional theory approach gave access to the corresponding
potential-energy surface (PES) seen by such an impinging spin-triplet molecule
and indicated barriers to dissociation which reduce the sticking probability.
Here, we further substantiate this non-adiabatic picture by providing a
detailed account of the employed approach. Building on the previous work, we
focus in particular on inaccuracies in present-day exchange-correlation
functionals. Our analysis shows that small quantitative differences in the
spin-triplet constrained PES obtained with different gradient-corrected
functionals have a noticeable effect on the lowest kinetic energy part of the
resulting sticking curve.Comment: 17 pages including 11 figures; related publications can be found at
http://www.fhi-berlin.mpg.de/th/th.htm
Coulomb Gap and Correlated Vortex Pinning in Superconductors
The positions of columnar pins and magnetic flux lines determined from a
decoration experiment on BSCCO were used to calculate the single--particle
density of states at low temperatures in the Bose glass phase. A wide Coulomb
gap is found, with gap exponent , as a result of the long--range
interaction between the vortices. As a consequence, the variable--range hopping
transport of flux lines is considerably reduced with respect to the
non--interacting case, the effective Mott exponent being enhanced from to for this specific experiment.Comment: 10 pages, Revtex, 4 figures appended as uu-encoded postscript files,
also available as hardcopies from [email protected]
Atomic-scale representation and statistical learning of tensorial properties
This chapter discusses the importance of incorporating three-dimensional
symmetries in the context of statistical learning models geared towards the
interpolation of the tensorial properties of atomic-scale structures. We focus
on Gaussian process regression, and in particular on the construction of
structural representations, and the associated kernel functions, that are
endowed with the geometric covariance properties compatible with those of the
learning targets. We summarize the general formulation of such a
symmetry-adapted Gaussian process regression model, and how it can be
implemented based on a scheme that generalizes the popular smooth overlap of
atomic positions representation. We give examples of the performance of this
framework when learning the polarizability and the ground-state electron
density of a molecule
Measurement of the branching ratio of the decay
From the 2002 data taking with a neutral kaon beam extracted from the
CERN-SPS, the NA48/1 experiment observed 97 candidates with a background contamination of events.
From this sample, the BR() is measured to be
Do columnar defects produce bulk pinning?
From magneto-optical imaging performed on heavy-ion irradiated YBaCuO single
crystals, it is found that at fields and temperatures where strong single
vortex pinning by individual irradiation-induced amorphous columnar defects is
to be expected, vortex motion is limited by the nucleation of vortex kinks at
the specimen surface rather than by half-loop nucleation in the bulk. In the
material bulk, vortex motion occurs through (easy) kink sliding. Depinning in
the bulk determines the screening current only at fields comparable to or
larger than the matching field, at which the majority of moving vortices is not
trapped by an ion track.Comment: 5 pages, 5 figures, submitted to Physical Review Letter
Building nonparametric -body force fields using Gaussian process regression
Constructing a classical potential suited to simulate a given atomic system
is a remarkably difficult task. This chapter presents a framework under which
this problem can be tackled, based on the Bayesian construction of
nonparametric force fields of a given order using Gaussian process (GP) priors.
The formalism of GP regression is first reviewed, particularly in relation to
its application in learning local atomic energies and forces. For accurate
regression it is fundamental to incorporate prior knowledge into the GP kernel
function. To this end, this chapter details how properties of smoothness,
invariance and interaction order of a force field can be encoded into
corresponding kernel properties. A range of kernels is then proposed,
possessing all the required properties and an adjustable parameter
governing the interaction order modelled. The order best suited to describe
a given system can be found automatically within the Bayesian framework by
maximisation of the marginal likelihood. The procedure is first tested on a toy
model of known interaction and later applied to two real materials described at
the DFT level of accuracy. The models automatically selected for the two
materials were found to be in agreement with physical intuition. More in
general, it was found that lower order (simpler) models should be chosen when
the data are not sufficient to resolve more complex interactions. Low GPs
can be further sped up by orders of magnitude by constructing the corresponding
tabulated force field, here named "MFF".Comment: 31 pages, 11 figures, book chapte
Recent NA48/2 and NA62 results
The NA48/2 Collaboration at CERN has accumulated and analysed unprecedented
statistics of rare kaon decays in the modes: () and ()
with nearly one percent background contamination. It leads to the improved
measurement of branching fractions and detailed form factor studies. New final
results from the analysis of 381 rare decay
candidates collected by the NA48/2 and NA62 experiments at CERN are presented.
The results include a decay rate measurement and fits to Chiral Perturbation
Theory (ChPT) description.Comment: Prepared for the Proceedings of "Moriond QCD and High Energy
Interactions. March 22-29 2014." conferenc
Interactions, Distribution of Pinning Energies, and Transport in the Bose Glass Phase of Vortices in Superconductors
We study the ground state and low energy excitations of vortices pinned to
columnar defects in superconductors, taking into account the long--range
interaction between the fluxons. We consider the ``underfilled'' situation in
the Bose glass phase, where each flux line is attached to one of the defects,
while some pins remain unoccupied. By exploiting an analogy with disordered
semiconductors, we calculate the spatial configurations in the ground state, as
well as the distribution of pinning energies, using a zero--temperature Monte
Carlo algorithm minimizing the total energy with respect to all possible
one--vortex transfers. Intervortex repulsion leads to strong correlations
whenever the London penetration depth exceeds the fluxon spacing. A pronounced
peak appears in the static structure factor for low filling fractions . Interactions lead to a broad Coulomb gap in the distribution of
pinning energies near the chemical potential , separating
the occupied and empty pins. The vanishing of at leads to a
considerable reduction of variable--range hopping vortex transport by
correlated flux line pinning.Comment: 16 pages (twocolumn), revtex, 16 figures not appended, please contact
[email protected]
- …
