36 research outputs found

    Coccolithophore biodiversity controls carbonate export in the Southern Ocean

    Get PDF
    Southern Ocean waters are projected to undergo profound changes in their physical and chemical properties in the coming decades. Coccolithophore blooms in the Southern Ocean are thought to account for a major fraction of the global marine calcium carbonate (CaCO3) production and export to the deep sea. Therefore, changes in the composition and abundance of Southern Ocean coccolithophore populations are likely to alter the marine carbon cycle, with feedbacks to the rate of global climate change. However, the contribution of coccolithophores to CaCO3 export in the Southern Ocean is uncertain, particularly in the circumpolar subantarctic zone that represents about half of the areal extent of the Southern Ocean and where coccolithophores are most abundant. Here, we present measurements of annual CaCO3 flux and quantitatively partition them amongst coccolithophore species and heterotrophic calcifiers at two sites representative of a large portion of the subantarctic zone. We find that coccolithophores account for a major fraction of the annual CaCO3 export, with the highest contributions in waters with low algal biomass accumulations. Notably, our analysis reveals that although Emiliania huxleyi is an important vector for CaCO3 export to the deep sea, less abundant but larger species account for most of the annual coccolithophore CaCO3 flux. This observation contrasts with the generally accepted notion that high particulate inorganic carbon accumulations during the austral summer in the subantarctic Southern Ocean are mainly caused by E. huxleyi blooms. It appears likely that the climate-induced migration of oceanic fronts will initially result in the poleward expansion of large coccolithophore species increasing CaCO3 production. However, subantarctic coccolithophore populations will eventually diminish as acidification overwhelms those changes. Overall, our analysis emphasizes the need for species-centred studies to improve our ability to project future changes in phytoplankton communities and their influence on marine biogeochemical cycles.info:eu-repo/semantics/publishedVersio

    Epitope characterization of sero-specific monoclonal antibody to Clostridium botulinum neurotoxin type A.

    Get PDF
    Botulinum neurotoxins (BoNTs) are extremely potent toxins that can contaminate foods and are a public health concern. Anti-BoNT antibodies have been described that are capable of detecting BoNTs; however there still exists a need for accurate and sensitive detection capabilities for BoNTs. Herein, we describe the characterization of a panel of eight monoclonal antibodies (MAbs) generated to the non-toxic receptor-binding domain of BoNT/A (H(C)50/A) developed using a high-throughput screening approach. In two independent hybridoma fusions, two groups of four IgG MAbs were developed against recombinant H(C)50/A. Of these eight, only a single MAb, F90G5-3, bound to the whole BoNT/A protein and was characterized further. The F90G5-3 MAb slightly prolonged time to death in an in vivo mouse bioassay and was mapped by pepscan to a peptide epitope in the N-terminal subdomain of H(C)50/A (H(CN)25/A) comprising amino acid residues (985)WTLQDTQEIKQRVVF(999), an epitope that is highly immunoreactive in humans. Furthermore, we demonstrate that F90G5-3 binds BoNT/A with nanomolar efficiency. Together, our results indicate that F90G5-3 is of potential value as a diagnostic immunoreagent for BoNT/A capture assay development and bio-forensic analysis

    Full annual monitoring of Subantarctic Emiliania huxleyi populations reveals highly calcified morphotypes in high-CO2 winter conditions [Dataset]

    Get PDF
    [EN]Supplement Table S1. a. Sampling dates and morphotype relative abundance of E. huxleyi coccolith assemblages collected in the surface layer at the SOTS site. b. Sampling intervals, fluxes and morphotype relative abundance and morphometric measurements of E. huxleyi coccolith assemblages intercepted by the sediment traps at the SOTS and SAM sites. Table S2. Environmental parameters measured at the surface layer of the SOTS site from August 2011 to July 2012.European Union's Horizon 2020, Marie Skłodowska-Curie Individual fellowshipThe dataset includes Supplementary Information, Table S1. : abundance, composition and morphometric data of E. huxleyi coccolith assemblages generated during the current study Table S2: environmental data Environmental parameters measured at the surface layer of the SOTS site from August 2011 to July 2012

    Full annual monitoring of Subantarctic Emiliania huxleyi populations reveals highly calcified morphotypes in high-CO2 winter conditions

    Get PDF
    Datos de investigación en: http://hdl.handle.net/10366/143074[EN]Ocean acidifcation is expected to have detrimental consequences for the most abundant calcifying phytoplankton species Emiliania huxleyi. However, this assumption is mainly based on laboratory manipulations that are unable to reproduce the complexity of natural ecosystems. Here, E. huxleyi coccolith assemblages collected over a year by an autonomous water sampler and sediment traps in the Subantarctic Zone were analysed. The combination of taxonomic and morphometric analyses together with in situ measurements of surface-water properties allowed us to monitor, with unprecedented detail, the seasonal cycle of E. huxleyi at two Subantarctic stations. E. huxleyi subantarctic assemblages were composed of a mixture of, at least, four diferent morphotypes. Heavier morphotypes exhibited their maximum relative abundances during winter, coinciding with peak annual TCO2 and nutrient concentrations, while lighter morphotypes dominated during summer, coinciding with lowest TCO2 and nutrients levels. The similar seasonality observed in both time-series suggests that it may be a circumpolar feature of the Subantarctic zone. Our results challenge the view that ocean acidifcation will necessarily lead to a replacement of heavily-calcifed coccolithophores by lightly-calcifed ones in subpolar ecosystems, and emphasize the need to consider the cumulative efect of multiple stressors on the probable succession of morphotypes.European Union's Horizon 2020, Marie Skłodowska-Curie Individual fellowshi

    Glucocorticoid receptor dimers control intestinal STAT1 and TNF-induced inflammation in mice

    Get PDF
    TNF is an important mediator in numerous inflammatory diseases, e.g., in inflammatory bowel diseases (IBDs). In IBD, acute increases in TNF production can lead to disease flares. Glucocorticoids (GCs), which are steroids that bind and activate the glucocorticoid receptor (GR), are able to protect animals and humans against acute TNF-induced inflammatory symptoms. Mice with a poor transcriptional response of GR dimer-dependent target genes were studied in a model of TNF-induced lethal inflammation. In contrast to the GRWT/WT mice, these GRdim/dim mice displayed a substantial increase in TNF sensitivity and a lack of protection by the GC dexamethasone (DEX). Unchallenged GRdim/dim mice had a strong IFN-stimulated gene (ISG) signature, along with STAT1 upregulation and phosphorylation. This ISG signature was gut specific and, based on our studies with antibiotics, depended on the gut microbiota. GR dimers directly bound to short DNA sequences in the STAT1 promoter known as inverted repeat negative GRE (IR-nGRE) elements. Poor control of STAT1 in GRdim/dim mice led to failure to repress ISG genes, resulting in excessive necroptosis induction by TNF. Our findings support a critical interplay among gut microbiota, IFNs, necroptosis, and GR in both the basal response to acute inflammatory challenges and pharmacological intervention by GCs

    Reduction in size of the calcifying phytoplankton Calcidiscus leptoporus to environmental changes between the Holocene and modern Subantarctic Southern Ocean

    Get PDF
    Unidad de excelencia MarĂ­a de Maeztu CEX2019-000940-MThe Subantarctic Zone of the Southern Ocean plays a disproportionally large role on the Earth system. Model projections predict rapid environmental change in the coming decades, including ocean acidification, warming, and changes in nutrient supply which pose a serious risk for marine ecosystems. Yet despite the importance of the Subantarctic Zone, annual and inter-annual time series are extremely rare, leading to important uncertainties about the current state of its ecosystems and hindering predictions of future response to climate change. Moreover, as the longest observational time series available are only a few decades long, it remains unknown whether marine pelagic ecosystems have already responded to ongoing environmental change during the industrial era. Here, we take advantage of multiple sampling efforts - monitoring of surface layer water properties together with sediment trap, seafloor sediment and sediment core sampling - to reconstruct the modern and pre-industrial state of the keystone calcifying phytoplankton Calcidiscus leptoporus, central to the global marine carbonate cycle. Morphometric measurements reveal that modern C. leptoporus coccoliths are 15% lighter and 25% smaller than those preserved in the underlying Holocene-aged sediments. The cumulative effect of multiple environmental factors appears responsible for the coccolith size variations since the Last Deglaciation, with warming and ocean acidification most likely playing a predominant role during the industrial era. Notably, extrapolation of our results suggests a future reduction in cell and coccolith size which will have a negative impact on the efficiency of the biological pump in the Southern Ocean through a reduction of carbonate ballasting. Lastly, our results tentatively suggest that C. leptoporus coccolith size could be used as a palaeo-proxy for growth rate. Future culture experiments will be needed to test this hypothesis

    Influenza neuraminidase characteristics and potential as a vaccine target

    No full text
    Neuraminidase of influenza A and B viruses plays a critical role in the virus life cycle and is an important target of the host immune system. Here, we highlight the current understanding of influenza neuraminidase structure, function, antigenicity, immunogenicity, and immune protective potential. Neuraminidase inhibiting antibodies have been recognized as correlates of protection against disease caused by natural or experimental influenza A virus infection in humans. In the past years, we have witnessed an increasing interest in the use of influenza neuraminidase to improve the protective potential of currently used influenza vaccines. A number of well-characterized influenza neuraminidase-specific monoclonal antibodies have been described recently, most of which can protect in experimental challenge models by inhibiting the neuraminidase activity or by Fc receptor-dependent mechanisms. The relative instability of the neuraminidase poses a challenge for protein-based antigen design. We critically review the different solutions that have been proposed to solve this problem, ranging from the inclusion of stabilizing heterologous tetramerizing zippers to the introduction of inter-protomer stabilizing mutations. Computationally engineered neuraminidase antigens have been generated that offer broad, within subtype protection in animal challenge models. We also provide an overview of modern vaccine technology platforms that are compatible with the induction of robust neuraminidase-specific immune responses. In the near future, we will likely see the implementation of influenza vaccines that confront the influenza virus with a double punch: targeting both the hemagglutinin and the neuraminidase

    Influenza Neuraminidase Characteristics and Potential as a Vaccine Target

    Get PDF
    Neuraminidase of influenza A and B viruses plays a critical role in the virus life cycle and is an important target of the host immune system. Here, we highlight the current understanding of influenza neuraminidase structure, function, antigenicity, immunogenicity, and immune protective potential. Neuraminidase inhibiting antibodies have been recognized as correlates of protection against disease caused by natural or experimental influenza A virus infection in humans. In the past years, we have witnessed an increasing interest in the use of influenza neuraminidase to improve the protective potential of currently used influenza vaccines. A number of well-characterized influenza neuraminidase-specific monoclonal antibodies have been described recently, most of which can protect in experimental challenge models by inhibiting the neuraminidase activity or by Fc receptor-dependent mechanisms. The relative instability of the neuraminidase poses a challenge for protein-based antigen design. We critically review the different solutions that have been proposed to solve this problem, ranging from the inclusion of stabilizing heterologous tetramerizing zippers to the introduction of inter-protomer stabilizing mutations. Computationally engineered neuraminidase antigens have been generated that offer broad, within subtype protection in animal challenge models. We also provide an overview of modern vaccine technology platforms that are compatible with the induction of robust neuraminidase-specific immune responses. In the near future, we will likely see the implementation of influenza vaccines that confront the influenza virus with a double punch: targeting both the hemagglutinin and the neuraminidase

    Influenza Neuraminidase Characteristics and Potential as a Vaccine Target

    No full text
    Neuraminidase of influenza A and B viruses plays a critical role in the virus life cycle and is an important target of the host immune system. Here, we highlight the current understanding of influenza neuraminidase structure, function, antigenicity, immunogenicity, and immune protective potential. Neuraminidase inhibiting antibodies have been recognized as correlates of protection against disease caused by natural or experimental influenza A virus infection in humans. In the past years, we have witnessed an increasing interest in the use of influenza neuraminidase to improve the protective potential of currently used influenza vaccines. A number of well-characterized influenza neuraminidase-specific monoclonal antibodies have been described recently, most of which can protect in experimental challenge models by inhibiting the neuraminidase activity or by Fc receptor-dependent mechanisms. The relative instability of the neuraminidase poses a challenge for protein-based antigen design. We critically review the different solutions that have been proposed to solve this problem, ranging from the inclusion of stabilizing heterologous tetramerizing zippers to the introduction of inter-protomer stabilizing mutations. Computationally engineered neuraminidase antigens have been generated that offer broad, within subtype protection in animal challenge models. We also provide an overview of modern vaccine technology platforms that are compatible with the induction of robust neuraminidase-specific immune responses. In the near future, we will likely see the implementation of influenza vaccines that confront the influenza virus with a double punch: targeting both the hemagglutinin and the neuraminidase
    corecore