273 research outputs found
Survey of classical density functionals for modelling hydrogen physisorption at 77 K
This work surveys techniques based on classical density functionals for modeling the quantum dispersion of physisorbed hydrogen at 77 K. Two such techniques are examined in detail. The first is based on the "open ring approximation" (ORA) of Broukhno et al., and it is compared with a technique based on the semiclassical approximation of Feynman and Hibbs (FH). For both techniques, a standard classical density functional is used to model hydrogen molecule-hydrogen molecule (i.e., excess) interactions. The three-dimensional (3D) quantum harmonic oscillator (QHO) system and a model of molecular hydrogen adsorption into a graphitic slit pore at 77 K are used as benchmarks. Density functional results are compared with path-integral Monte Carlo simulations and with exact solutions for the 3D QHO system. It is found that neither of the density functional treatments are entirely satisfactory. However, for hydrogen physisorption studies at 77 K the ORA based technique is generally superior to the FH based technique due to a fortunate cancellation of errors in the density functionals used. But, if more accurate excess functionals are used, the FH technique would be superior
Self-referential Monte Carlo method for calculating the free energy of crystalline solids
A self-referential Monte Carlo method is described for calculating the free energy of crystalline solids. All Monte Carlo methods for the free energy of classical crystalline solids calculate the free-energy difference between a state whose free energy can be calculated relatively easily and the state of interest. Previously published methods employ either a simple model crystal, such as the Einstein crystal, or a fluid as the reference state. The self-referential method employs a radically different reference state; it is the crystalline solid of interest but with a different number of unit cells. So it calculates the free-energy difference between two crystals, differing only in their size. The aim of this work is to demonstrate this approach by application to some simple systems, namely, the face centered cubic hard sphere and Lennard-Jones crystals. However, it can potentially be applied to arbitrary crystals in both bulk and confined environments, and ultimately it could also be very efficient
The self-referential method for linear rigid bodies : application to hard and Lennard-Jones dumbbells
The self-referential (SR) method incorporating thermodynamic integration (TI) [Sweatman et al., J. Chem. Phys. 128, 064102 (2008)] is extended to treat systems of rigid linear bodies. The method is then applied to obtain the canonical ensemble Helmholtz free energy of the alpha-N2 and plastic face centered cubic phases of systems of hard and Lennard-Jones dumbbells using Monte Carlo simulations. Generally good agreement with reference literature data is obtained, which indicates that the SR-TI method is potentially very general and robust
The self-referential method combined with thermodynamic integration
The self-referential method [M. B. Sweatman, Phys. Rev. E 72, 016711 (2005)] for calculating the free energy of crystalline solids via molecular simulation is combined with thermodynamic integration to produce a technique that is convenient and efficient. Results are presented for the chemical potential of hard sphere and Lennard-Jones face centered cubic crystals that agree well with this previous work. For the small system sizes studied, this technique is about 100 times more efficient than the parameter hopping technique used previously
Lattice density-functional theory of surface melting: the effect of a square-gradient correction
I use the method of classical density-functional theory in the
weighted-density approximation of Tarazona to investigate the phase diagram and
the interface structure of a two-dimensional lattice-gas model with three
phases -- vapour, liquid, and triangular solid. While a straightforward
mean-field treatment of the interparticle attraction is unable to give a stable
liquid phase, the correct phase diagram is obtained when including a suitably
chosen square-gradient term in the system grand potential. Taken this theory
for granted, I further examine the structure of the solid-vapour interface as
the triple point is approached from low temperature. Surprisingly, a novel
phase (rather than the liquid) is found to grow at the interface, exhibiting an
unusually long modulation along the interface normal. The conventional
surface-melting behaviour is recovered only by artificially restricting the
symmetries being available to the density field.Comment: 16 pages, 6 figure
The cluster vapour to cluster solid transition
Until now, depletion induced transitions have been the hallmark of multicomponent systems only. Monte Carlo simulations reveal a depletion-induced phase transition from cluster vapor to cluster solid in a one-component fluid with competing short range and long range interactions. This confirms a prediction made by earlier theoretical work. Analysis of renormalized cluster-cluster and cluster-vapor interactions suggest that a cluster liquid is also expected within a very narrow range of model parameters. These insights could help identify the mechanisms of clustering in experiments and assist the design of colloidal structures through engineered self-assembly
- …